## Structure mappings, coextensions and regular four-spiral semigroups

HTML articles powered by AMS MathViewer

- by John Meakin PDF
- Trans. Amer. Math. Soc.
**255**(1979), 111-134 Request permission

## Abstract:

The structure mapping approach to regular semigroups developed by K. S. S. Nambooripad and J. Meakin is used to describe the $\mathcal {K}$-coextensions of the fundamental four-sprial semigroup and hence to describe the structure of all regular semigroups whose idempotents form a four-spiral biordered set. Isomorphisms between regular four-spiral semigroups are studied. The notion of structural uniformity of a regular semigroup is defined and exploited.## References

- Karl Byleen, John Meakin, and Francis Pastijn,
*The fundamental four-spiral semigroup*, J. Algebra**54**(1978), no. 1, 6–26. MR**511454**, DOI 10.1016/0021-8693(78)90018-2 - A. H. Clifford,
*The fundamental representation of a reqular semigroup*, Semigroup Forum**10**(1975/76), no. 1, 84–92. MR**393312**, DOI 10.1007/BF02194875 - A. H. Clifford and G. B. Preston,
*The algebraic theory of semigroups. Vol. I*, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR**0132791** - A. Coudron,
*Sur les extensions de demi-groupes réciproques*, Bull. Soc. Roy. Sci. Liège**37**(1968), 409–419 (French, with English summary). MR**240227** - H. D’Alarcao,
*Idempotent-separating extensions of inverse semigroups*, J. Austral. Math. Soc.**9**(1969), 211–217. MR**0238970**, DOI 10.1017/S1446788700005784 - Pierre Antoine Grillet,
*The structure of regular semigroups. III. The reduced case*, Semigroup Forum**8**(1974), no. 3, 260–265. MR**382497**, DOI 10.1007/BF02194767 - Pierre Antoine Grillet,
*The structure of regular semigroups. IV. The general case*, Semigroup Forum**8**(1974), no. 4, 368–373. MR**382498**, DOI 10.1007/BF02194779 - T. E. Hall,
*On orthodox semigroups and uniform and antiuniform bands*, J. Algebra**16**(1970), 204–217. MR**265492**, DOI 10.1016/0021-8693(70)90025-6 - T. E. Hall,
*On regular semigroups*, J. Algebra**24**(1973), 1–24. MR**310098**, DOI 10.1016/0021-8693(73)90150-6 - Gérard Lallement and Mario Petrich,
*Décompositions $I$-matricielles d’un demi-groupe*, J. Math. Pures Appl. (9)**45**(1966), 67–117 (French). MR**197600**
J. E. Leech, $\mathcal {K}$- - John Meakin,
*On the structure of inverse semigroups*, Semigroup Forum**12**(1976), no. 1, 6–14. MR**430115**, DOI 10.1007/BF02195904 - John Meakin,
*The structure mappings of a regular semigroup*, Proc. Edinburgh Math. Soc. (2)**21**(1978/79), no. 2, 135–142. MR**514900**, DOI 10.1017/S0013091500016096 - John Meakin,
*Coextensions of inverse semigroups*, J. Algebra**46**(1977), no. 2, 315–333. MR**437663**, DOI 10.1016/0021-8693(77)90373-8 - W. D. Munn,
*Uniform semilattices and bisimple inverse semigroups*, Quart. J. Math. Oxford Ser. (2)**17**(1966), 151–159. MR**199292**, DOI 10.1093/qmath/17.1.151 - W. D. Munn,
*Fundamental inverse semigroups*, Quart. J. Math. Oxford Ser. (2)**21**(1970), 157–170. MR**262402**, DOI 10.1093/qmath/21.2.157 - W. D. Munn,
*Some results on $0$-simple inverse semigroups*, Proceedings of a Symposium on Inverse Semigroups and their Generalisations (Northern Illinois Univ., DeKalb, Ill., 1973) Northern Illinois Univ., DeKalb, Ill., 1973, pp. 109–121. MR**0382510**
K. S. S. Nambooripad, - K. S. S. Nambooripad,
*Structure of regular semigroups. I. Fundamental regular semigroups*, Semigroup Forum**9**(1974/75), no. 4, 354–363. MR**376920**, DOI 10.1007/BF02194864 - K. S. S. Nambooripad,
*Structure of regular semigroups. II. The general case*, Semigroup Forum**9**(1974/75), no. 4, 364–371. MR**376921**, DOI 10.1007/BF02194865
—, - N. R. Reilly,
*Bisimple $\omega$-semigroups*, Proc. Glasgow Math. Assoc.**7**(1966), 160–167 (1966). MR**190252**, DOI 10.1017/S2040618500035346 - B. M. Šaĭn,
*Pseudo-semilattices and pseudo-lattices*, Izv. Vysš. Učebn. Zaved. Matematika**2(117)**(1972), 81–94 (Russian). MR**0306076**

*coextensions and the structure of bands of groups*, Mem. Amer. Math. Soc. No. 157 (1975).

*Structure of regular semigroups*, Thesis, Univ. of Kerala, Sept. 1973.

*Pseudo-semilattices and biordered sets*, Proc. Edinburgh Math. Soc. (submitted). —,

*The natural partial order on a regular semigroup*, Proc. Edinburgh Math. Soc. (submitted).

## Additional Information

- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**255**(1979), 111-134 - MSC: Primary 20M10
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542873-1
- MathSciNet review: 542873