Ergodic behaviour of nonstationary regenerative processes
HTML articles powered by AMS MathViewer
- by David McDonald
- Trans. Amer. Math. Soc. 255 (1979), 135-152
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542874-3
- PDF | Request permission
Abstract:
Let ${V_t}$ be a regenerative process whose successive generations are not necessarily identically distributed and let A be a measurable set in the range of ${V_t}$. Let ${\mu _n}$ be the mean length of the nth generation and ${\alpha _n}$ be the mean time ${V_t}$ is in A during the nth generation. We give conditions ensuring ${\lim _{t \to \infty }} \operatorname {prob} \{ {V_t} \in A \} = \alpha /\mu$ where $\lim \limits _{n \to \infty } (1/n)\Sigma _{j = 1}^n {\mu _j} = \mu$ and $\lim \limits _{n \to \infty } (1/n)\Sigma _{j = 1}^n {\alpha _j} = \alpha$.References
- David R. McDonald, On local limit theorem for integer valued random variables, Teor. Veroyatnost. i Primenen. 24 (1979), no. 3, 607–614 (English, with Russian summary). MR 541375
- David McDonald, On semi-Markov and semi-regenerative processes. I, Z. Wahrsch. Verw. Gebiete 42 (1978), no. 4, 261–277. MR 491492, DOI 10.1007/BF00533463
- David McDonald, On semi-Markov and semi-regenerative processes. I, Z. Wahrsch. Verw. Gebiete 42 (1978), no. 4, 261–277. MR 491492, DOI 10.1007/BF00533463
- J. Mineka, A criterion for tail events for sums of independent random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 163–170. MR 350890, DOI 10.1007/BF00535889
- J. Mineka, Local limit theorems and recurrence conditions for sums of independent integer-valued random variables, Ann. Math. Statist. 43 (1972), 251–259. MR 314096, DOI 10.1214/aoms/1177692718
- A. B. Muhin, The local limit theorem for densities, and asymptotic uniform distribedness, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 15 (1971), no. 1, 17–23 (Russian, with Uzbek summary). MR 0290434
- Steven Orey, Tail events for sums of independent random variables, J. Math. Mech. 15 (1966), 937–951. MR 0202178
- Walter L. Smith, Renewal theory and its ramifications, J. Roy. Statist. Soc. Ser. B 20 (1958), 243–302. MR 99090, DOI 10.1111/j.2517-6161.1958.tb00294.x
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 255 (1979), 135-152
- MSC: Primary 60K05
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542874-3
- MathSciNet review: 542874