CR functions and tube manifolds
HTML articles powered by AMS MathViewer
- by M. Kazlow
- Trans. Amer. Math. Soc. 255 (1979), 153-171
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542875-5
- PDF | Request permission
Abstract:
Various generalizations of Bochner’s theorem on the extension of holomorphic functions over tube domains are considered. It is shown that CR functions on tubes over connected, locally closed, locally starlike subsets of ${\textbf {R}^n}$ uniquely extend to CR functions on almost all of the convex hull of the tube set. A CR extension theorem on maximally stratified real submanifolds of ${\textbf {C}^n}$ is proven. The above two theorems are used to show that the CR functions (resp. CR distributions) on tubes over a fairly general class of submanifolds of ${\textbf {R}^n}$ uniquely extend to CR functions (CR distributions) on almost all of the convex hull.References
- Aldo Andreotti and C. Denson Hill, Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 299–324. MR 460724
- Aldo Andreotti and C. Denson Hill, E. E. Levi convexity and the Hans Lewy problem. I. Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 325–363. MR 460725
- James A. Carlson and C. Denson Hill, On the maximum modulus principle for the tangential Cauchy-Riemann equations, Math. Ann. 208 (1974), 91–97. MR 352524, DOI 10.1007/BF01432379
- Robert Carmignani, Envelopes of holomorphy and holomorphic convexity, Trans. Amer. Math. Soc. 179 (1973), 415–431. MR 316748, DOI 10.1090/S0002-9947-1973-0316748-1
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. 10-I, Academic Press, New York-London, 1969. Enlarged and corrected printing. MR 0349288 —, Treatise on analysis, Vols. 3 and 4, Academic Press, New York, 1972, 1974.
- S. J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 275–314. MR 237816
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Robert Hermann, Convexity and pseudoconvexity for complex manifolds, J. Math. Mech. 13 (1964), 667–672. MR 0167995
- C. Denson Hill, A Kontinuitätssatz for $\bar \partial _{M}$ and Lewy extendibility, Indiana Univ. Math. J. 22 (1972/73), 339–353. MR 304699, DOI 10.1512/iumj.1972.22.22028 C. D. Hill and R. Osserman, Complex manifolds determined by odd dimensional manifolds (unpublished).
- C. Denson Hill and Geraldine Taiani, Families of analytic discs in $\textbf {C}^{n}$ with boundaries on a prescribed CR submanifold, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 2, 327–380. MR 501906
- L. R. Hunt and R. O. Wells Jr., Extensions of CR-functions, Amer. J. Math. 98 (1976), no. 3, 805–820. MR 432913, DOI 10.2307/2373816 L. R. Hunt and M. Kazlow, A two-regular H. Lewy extension phenomena, preprint. L. Hörmander, An introduction to complex analysis of several variables, Van Nostrand, Princeton, N. J., 1966. M. Kazlow, CR-functions on tube manifolds, Ph. D. Thesis, SUNY at Stony Brook, New York.
- Hikosaburo Komatsu, A local version of Bochner’s tube theorem, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 19 (1972), 201–214. MR 316749
- Hans Lewy, On hulls of holomorphy, Comm. Pure Appl. Math. 13 (1960), 587–591. MR 150339, DOI 10.1002/cpa.3160130403
- Leopoldo Nachbin, Holomorphic functions, domains of holomorphy and local properties, North-Holland Mathematics Studies, vol. 1, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1970. Notes prepared by Richard M. Aron. MR 0274798
- Ricardo Nirenberg, On the H. Lewy extension phenomenon, Trans. Amer. Math. Soc. 168 (1972), 337–356. MR 301234, DOI 10.1090/S0002-9947-1972-0301234-4
- H. Rossi and M. Vergne, Équations de Cauchy-Riemann tangentielles associées à un domaine de Siegel, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 1, 31–80 (French). MR 445019, DOI 10.24033/asens.1303
- R. O. Wells Jr., Function theory on differentiable submanifolds, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 407–441. MR 0357856
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 255 (1979), 153-171
- MSC: Primary 32A07; Secondary 32D05
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542875-5
- MathSciNet review: 542875