$\beta$-recursion theory
HTML articles powered by AMS MathViewer
- by Sy D. Friedman
- Trans. Amer. Math. Soc. 255 (1979), 173-200
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542876-7
- PDF | Request permission
Abstract:
We define recursion theory on arbitrary limit ordinals using the J-hierarchy for L. This generalizes $\alpha$-recursion theory, where the ordinal is assumed to be ${\Sigma _1}$-admissible. The notion of tameness for a recursively enumerable set is defined and the degrees of tame r.e. sets are studied. Post’s Problem is solved when ${\Sigma _1}\operatorname {cf} \beta \beta {\ast }$. Lastly, simple sets are constructed for all $\beta$ with the aid of a $\beta$-recursive version of Fodor’s Theorem.References
- Keith J. Devlin, Aspects of constructibility, Lecture Notes in Mathematics, Vol. 354, Springer-Verlag, Berlin-New York, 1973. MR 0376351, DOI 10.1007/BFb0059290
- Richard M. Friedberg, Two recursively enumerable sets of incomparable degrees of unsolvability (solution of Post’s problem, 1944), Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 236–238. MR 84474, DOI 10.1073/pnas.43.2.236 Sy D. Friedman, Recursion on inadmissible ordinals, Ph. D. Thesis, M. I. T., 1976. —, Post’s Problem without admissibility, Advances in Math. (to appear).
- S. D. Friedman and G. E. Sacks, Inadmissible recursion theory, Bull. Amer. Math. Soc. 83 (1977), no. 2, 255–256. MR 505378, DOI 10.1090/S0002-9904-1977-14289-4 K. Gödel, Consistency proof for the generalized continuum hypothesis, Proc. Nat. Acad. Sci. U. S. A. 25 (1939).
- R. Björn Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR 309729, DOI 10.1016/0003-4843(72)90001-0
- G. Kreisel and Gerald E. Sacks, Metarecursive sets, J. Symbolic Logic 30 (1965), 318–338. MR 213233, DOI 10.2307/2269621 S. Kripke, Transfinite recursion on admissible ordinals. I, II, J. Symbolic Logic 29 (1964).
- Manuel Lerman, Maximal $\alpha$-r.e. sets, Trans. Amer. Math. Soc. 188 (1974), 341–386. MR 332458, DOI 10.1090/S0002-9947-1974-0332458-X
- Manuel Lerman and Gerald E. Sacks, Some minimal pairs of $\alpha$-recursively enumerable degrees, Ann. Math. Logic 4 (1972), 415–442. MR 439605, DOI 10.1016/0003-4843(72)90007-1
- Wolfgang Maass, Inadmissibility, tame r.e. sets and the admissible collapse, Ann. Math. Logic 13 (1978), no. 2, 149–170. MR 486628, DOI 10.1016/0003-4843(78)90002-5 A. A. Muchnik, Negative answer to the problem of reducibility of the theory of algorithms, Dokl. Akad. Nauk SSSR 108 (1956). R. Platek, Foundations of recursion theory, Ph. D. Thesis, Stanford, 1966.
- Emil L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284–316. MR 10514, DOI 10.1090/S0002-9904-1944-08111-1
- Gerald E. Sacks, Post’s problem, admissible ordinals, and regularity, Trans. Amer. Math. Soc. 124 (1966), 1–23. MR 201299, DOI 10.1090/S0002-9947-1966-0201299-1
- G. E. Sacks and S. G. Simpson, The $\alpha$-finite injury method, Ann. Math. Logic 4 (1972), 343–367. MR 369041, DOI 10.1016/0003-4843(72)90004-6
- Richard A. Shore, Splitting an $\alpha$-recursively enumerable set, Trans. Amer. Math. Soc. 204 (1975), 65–77. MR 379154, DOI 10.1090/S0002-9947-1975-0379154-1 —, The r.e $\alpha$-degrees are dense, Ann. Math. Logic 9 (1976). S. Simpson, Admissible ordinals and recursion theory, Ph. D. Thesis, M. I. T., 1971. —, Degree theory on admissible ordinals, Generalized Recursion Theory (Fenstad, Editor) Hinman, 1974.
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 255 (1979), 173-200
- MSC: Primary 03D60; Secondary 03E45
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542876-7
- MathSciNet review: 542876