Moduli of punctured tori and the accessory parameter of Lamé’s equation
HTML articles powered by AMS MathViewer
- by L. Keen, H. E. Rauch and A. T. Vasquez
- Trans. Amer. Math. Soc. 255 (1979), 201-230
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542877-9
- PDF | Request permission
Abstract:
To solve the problems of uniformization and moduli for Riemann surfaces, covering spaces and covering mappings must be constructed, and the parameters on which they depend must be determined. When the Riemann surface is a punctured torus this can be done quite explicitly in several ways. The covering mappings are related by an ordinary differential equation, the Lamé equation. There is a constant in this equation which is called the “accessory parameter". In this paper we study the behavior of this accessory parameter in two ways. First, we use Hill’s method to obtain implicit relationships among the moduli of the different uniformizations and the accessory parameter. We prove that the accessory parameter is not suitable as a modulus-even locally. Then we use a computer and numerical techniques to determine more explicitly the character of the singularities of the accessory parameter.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 0200442 P. Appell and E. Goursat, Théorie des fonctions algébriques d’une variable. Tome II, Fonctions automorphes (P. Fatou), Gauthier-Villars, Paris, 1930.
- Lipman Bers, Quasiconformal mappings, with applications to differential equations, function theory and topology, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1083–1100. MR 463433, DOI 10.1090/S0002-9904-1977-14390-5
- Göran Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math. 78 (1946), 1–96 (German). MR 15185, DOI 10.1007/BF02421600 L. Ford, Automorphic functions, Chelsea, New York, 1929. R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Funktionen. Vols. I, II, Teubner, Leipzig, 1926.
- Erich Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1970 (German). Mit einer Vorbemerkung von B. Schoenberg, einer Anmerkung von Carl Ludwig Siegel, und einer Todesanzeige von Jakob Nielsen; Zweite durchgesehene Auflage. MR 0371577 E. Hilb, Lineare Differentialgleichungen im komplexen Gebiet, Enzyklopädie der Math. Wissenschaften II, Band 6, Teubner, Leipzig, 1913, pp. 471-562.
- Linda Keen, Canonical polygons for finitely generated Fuchsian groups, Acta Math. 115 (1965), 1–16. MR 183873, DOI 10.1007/BF02392200
- Linda Keen, On fundamental domains and the Teichmüller modular group, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 185–194. MR 0364631
- Linda Keen, A rough fundamental domain for Teichmüller spaces, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1199–1226. MR 454075, DOI 10.1090/S0002-9904-1977-14402-9 —, Accessory parameters and punctured tori, Duke Math. J. (submitted).
- F. Klein, Bemerkungen zur Theorie der linearen Differentialgleichungen zweiter Ordnung, Math. Ann. 64 (1907), no. 2, 175–196 (German). MR 1511433, DOI 10.1007/BF01449891
- Wilhelm Magnus and Stanley Winkler, Hill’s equation, Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR 0197830
- Wilhelm Magnus, Monodromy groups and Hill’s equation, Comm. Pure Appl. Math. 29 (1976), no. 6, 691–706. MR 419907, DOI 10.1002/cpa.3160290611 H. Poincaré, Sur les groupes des équations linéaires, Acta Math. 4 (1884), 201-312.
- Harry E. Rauch and Aaron Lebowitz, Elliptic functions, theta functions, and Riemann surfaces, Williams & Wilkins Co., Baltimore, Md., 1973. MR 0349993
- H. E. Rauch, A transcendental view of the space of algebraic Riemann surfaces, Bull. Amer. Math. Soc. 71 (1965), 1–39. MR 213543, DOI 10.1090/S0002-9904-1965-11225-3 M. Schlessinger, Handbuch der theorie der linearen Differentialgleichungen, Teubner, Leipzig, 1897. E. T. Whittaker and G. N. Watson, A course in modern analysis, Cambridge Univ. Press, Cambridge, 1950.
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 255 (1979), 201-230
- MSC: Primary 30F10; Secondary 14H15
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542877-9
- MathSciNet review: 542877