Necessary conditions for the convergence of cardinal Hermite splines as their degree tends to infinity
HTML articles powered by AMS MathViewer
- by T. N. T. Goodman
- Trans. Amer. Math. Soc. 255 (1979), 231-241
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542878-0
- PDF | Request permission
Abstract:
Let ${\mathcal {S}_{n,s}}$ denote the class of cardinal Hermite splines of degree n having knots of multiplicity S at the integers. In this paper we show that if ${f_n} \to f$ uniformly on R, where ${f_n} \in {\mathcal {S}_{{i_{n,s}}}} {i_n} \to \infty$ as $n \to \infty$, and f is bounded, then f is the restriction to R of an entire function of exponential type $\leqslant S$. In proving this result, we need to derive some extremal properties of certain splines ${\mathcal {E}_{n,s}} \in {\mathcal {S}_{n,s}}$, in particular that $||{\mathcal {E}_{n,s}}|{|_\infty }$ minimises $||S|{|_\infty }$ over $S \in {\mathcal {S}_{n,s}}$ with $||{S^{(n)}}|{|_\infty } = ||\mathcal {E}_{n,s}^{(n)}|{|_\infty }$.References
- Alfred S. Cavaretta Jr., On cardinal perfect splines of least sup-norm on the real axis, J. Approximation Theory 8 (1973), 285–303. MR 350263, DOI 10.1016/0021-9045(73)90001-4 —, An elementary proof of Kolmogorov’s theorem, Amer. Math. Monthly 82 (1974), 480-486.
- J. W. Jerome and L. L. Schumaker, On $Lg$-splines, J. Approximation Theory 2 (1969), 29–49. MR 241864, DOI 10.1016/0021-9045(69)90029-x
- Samuel Karlin, Total positivity. Vol. I, Stanford University Press, Stanford, Calif., 1968. MR 0230102
- S. L. Lee and A. Sharma, Cardinal lacunary interpolation by $g$-splines. I. The characteristic polynomials, J. Approximation Theory 16 (1976), no. 1, 85–96. MR 415141, DOI 10.1016/0021-9045(76)90097-6
- Peter R. Lipow and I. J. Schoenberg, Cardinal interpolation and spline functions. III. Cardinal Hermite interpolation, Linear Algebra Appl. 6 (1973), 273–304. MR 477565, DOI 10.1016/0024-3795(73)90029-3
- George G. Lorentz, Zeros of splines and Birkhoff’s kernel, Math. Z. 142 (1975), 173–180. MR 393950, DOI 10.1007/BF01214948
- M. J. Marsden and S. D. Riemenschneider, Cardinal Hermite spline interpolation: convergence as the degree tends to infinity, Trans. Amer. Math. Soc. 235 (1978), 221–244. MR 463752, DOI 10.1090/S0002-9947-1978-0463752-3
- Charles A. Micchelli, Oscillation matrices and cardinal spline interpolation, Studies in spline functions and approximation theory, Academic Press, New York, 1976, pp. 163–201. MR 0481735
- I. J. Schoenberg, Notes on spline functions. III. On the convergence of the interpolating cardinal splines as their degree tends to infinity, Israel J. Math. 16 (1973), 87–93. MR 425438, DOI 10.1007/BF02761973
- F. B. Richards and I. J. Schoenberg, Notes on spline functions. IV. A cardinal spline analogue of the theorem of the brothers Markov, Israel J. Math. 16 (1973), 94–102. MR 425439, DOI 10.1007/BF02761974
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 255 (1979), 231-241
- MSC: Primary 41A15; Secondary 41A05
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542878-0
- MathSciNet review: 542878