The variety of modular lattices is not generated by its finite members
HTML articles powered by AMS MathViewer
- by Ralph Freese
- Trans. Amer. Math. Soc. 255 (1979), 277-300
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542881-0
- PDF | Request permission
Abstract:
This paper proves the result of the title. It shows that there is a five-variable lattice identity which holds in all finite modular lattices but not in all modular lattices. It is also shown that every free distributive lattice can be embedded into a free modular lattice. An example showing that modular lattice epimorphisms need not be onto is given.References
- Kirby A. Baker, Equational classes of modular lattices, Pacific J. Math. 28 (1969), 9–15. MR 244118, DOI 10.2140/pjm.1969.28.9 P. Crawley and R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Englewood Cliffs, N. J., 1973.
- Richard A. Dean, Component subsets of the free lattice on $n$ generators, Proc. Amer. Math. Soc. 7 (1956), 220–226. MR 78957, DOI 10.1090/S0002-9939-1956-0078957-4
- R. P. Dilworth, The arithmetical theory of Birkhoff lattices, Duke Math. J. 8 (1941), 286–299. MR 5094, DOI 10.1215/S0012-7094-41-00822-0
- Ralph Freese, Planar sublattices of $\textrm {FM}(4)$, Algebra Universalis 6 (1976), no. 1, 69–72. MR 398927, DOI 10.1007/BF02485816
- R. Freese, Some varieties of modular lattices not generated by their finite dimensional members, Contributions to universal algebra (Colloq., József Attila Univ., Szeged, 1975) Colloq. Math. Soc. János Bolyai, Vol. 17, North-Holland, Amsterdam, 1977, pp. 133–144. MR 0485608
- Fred Galvin and Bjarni Jónsson, Distributive sublattices of a free lattice, Canadian J. Math. 13 (1961), 265–272. MR 122738, DOI 10.4153/CJM-1961-022-8
- G. Grätzer, B. Jónsson, and H. Lakser, The amalgamation property in equational classes of modular lattices, Pacific J. Math. 45 (1973), 507–524. MR 366768, DOI 10.2140/pjm.1973.45.507
- M. Hall and R. P. Dilworth, The imbedding problem for modular lattices, Ann. of Math. (2) 45 (1944), 450–456. MR 10541, DOI 10.2307/1969187
- C. Herrmann and A. P. Huhn, Lattices of normal subgroups which are generated by frames, Lattice theory (Proc. Colloq., Szeged, 1974) Colloq. Math. Soc. János Bolyai, Vol. 14, North-Holland, Amsterdam, 1976, pp. 97–136. MR 0447064
- A. P. Huhn, Schwach distributive Verbände. I, Acta Sci. Math. (Szeged) 33 (1972), 297–305 (German). MR 337710
- A. P. Huhn, On G. Grätzer’s problem concerning automorphisms of a finitely presented lattice, Algebra Universalis 5 (1975), 65–71. MR 392713, DOI 10.1007/BF02485232
- Bjarni Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110–121 (1968). MR 237402, DOI 10.7146/math.scand.a-10850 —, Varieties of lattices: some open problems, (to appear).
- Fumitomo Maeda, Kontinuierliche Geometrien, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 95, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958 (German). MR 0090579, DOI 10.1007/978-3-642-94727-8
- Ralph McKenzie, Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1–43. MR 313141, DOI 10.1090/S0002-9947-1972-0313141-1
- Aleit Mitschke and Rudolf Wille, Finite distributive lattices projective in the class of all modular lattices, Algebra Universalis 6 (1976), no. 3, 383–393. MR 429686, DOI 10.1007/BF02485845
- E. T. Schmidt, On finitely generated simple modular lattices, Period. Math. Hungar. 6 (1975), no. 3, 213–216. MR 398932, DOI 10.1007/BF02018273
- John von Neumann, Continuous geometry, Princeton Mathematical Series, No. 25, Princeton University Press, Princeton, N.J., 1960. Foreword by Israel Halperin. MR 0120174
- Rudolf Wille, Primitive Länge und primitive Weite bei modularen Verbänden, Math. Z. 108 (1969), 129–136 (German). MR 241332, DOI 10.1007/BF01114466
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 255 (1979), 277-300
- MSC: Primary 06C05; Secondary 06C20
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542881-0
- MathSciNet review: 542881