## The variety of modular lattices is not generated by its finite members

HTML articles powered by AMS MathViewer

- by Ralph Freese PDF
- Trans. Amer. Math. Soc.
**255**(1979), 277-300 Request permission

## Abstract:

This paper proves the result of the title. It shows that there is a five-variable lattice identity which holds in all finite modular lattices but not in all modular lattices. It is also shown that every free distributive lattice can be embedded into a free modular lattice. An example showing that modular lattice epimorphisms need not be onto is given.## References

- Kirby A. Baker,
*Equational classes of modular lattices*, Pacific J. Math.**28**(1969), 9–15. MR**244118**, DOI 10.2140/pjm.1969.28.9
P. Crawley and R. P. Dilworth, - Richard A. Dean,
*Component subsets of the free lattice on $n$ generators*, Proc. Amer. Math. Soc.**7**(1956), 220–226. MR**78957**, DOI 10.1090/S0002-9939-1956-0078957-4 - R. P. Dilworth,
*The arithmetical theory of Birkhoff lattices*, Duke Math. J.**8**(1941), 286–299. MR**5094**, DOI 10.1215/S0012-7094-41-00822-0 - Ralph Freese,
*Planar sublattices of $\textrm {FM}(4)$*, Algebra Universalis**6**(1976), no. 1, 69–72. MR**398927**, DOI 10.1007/BF02485816 - R. Freese,
*Some varieties of modular lattices not generated by their finite dimensional members*, Contributions to universal algebra (Colloq., József Attila Univ., Szeged, 1975) Colloq. Math. Soc. János Bolyai, Vol. 17, North-Holland, Amsterdam, 1977, pp. 133–144. MR**0485608** - Fred Galvin and Bjarni Jónsson,
*Distributive sublattices of a free lattice*, Canadian J. Math.**13**(1961), 265–272. MR**122738**, DOI 10.4153/CJM-1961-022-8 - G. Grätzer, B. Jónsson, and H. Lakser,
*The amalgamation property in equational classes of modular lattices*, Pacific J. Math.**45**(1973), 507–524. MR**366768**, DOI 10.2140/pjm.1973.45.507 - M. Hall and R. P. Dilworth,
*The imbedding problem for modular lattices*, Ann. of Math. (2)**45**(1944), 450–456. MR**10541**, DOI 10.2307/1969187 - C. Herrmann and A. P. Huhn,
*Lattices of normal subgroups which are generated by frames*, Lattice theory (Proc. Colloq., Szeged, 1974) Colloq. Math. Soc. János Bolyai, Vol. 14, North-Holland, Amsterdam, 1976, pp. 97–136. MR**0447064** - A. P. Huhn,
*Schwach distributive Verbände. I*, Acta Sci. Math. (Szeged)**33**(1972), 297–305 (German). MR**337710** - A. P. Huhn,
*On G. Grätzer’s problem concerning automorphisms of a finitely presented lattice*, Algebra Universalis**5**(1975), 65–71. MR**392713**, DOI 10.1007/BF02485232 - Bjarni Jónsson,
*Algebras whose congruence lattices are distributive*, Math. Scand.**21**(1967), 110–121 (1968). MR**237402**, DOI 10.7146/math.scand.a-10850
—, - Fumitomo Maeda,
*Kontinuierliche Geometrien*, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 95, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958 (German). MR**0090579**, DOI 10.1007/978-3-642-94727-8 - Ralph McKenzie,
*Equational bases and nonmodular lattice varieties*, Trans. Amer. Math. Soc.**174**(1972), 1–43. MR**313141**, DOI 10.1090/S0002-9947-1972-0313141-1 - Aleit Mitschke and Rudolf Wille,
*Finite distributive lattices projective in the class of all modular lattices*, Algebra Universalis**6**(1976), no. 3, 383–393. MR**429686**, DOI 10.1007/BF02485845 - E. T. Schmidt,
*On finitely generated simple modular lattices*, Period. Math. Hungar.**6**(1975), no. 3, 213–216. MR**398932**, DOI 10.1007/BF02018273 - John von Neumann,
*Continuous geometry*, Princeton Mathematical Series, No. 25, Princeton University Press, Princeton, N.J., 1960. Foreword by Israel Halperin. MR**0120174** - Rudolf Wille,
*Primitive Länge und primitive Weite bei modularen Verbänden*, Math. Z.**108**(1969), 129–136 (German). MR**241332**, DOI 10.1007/BF01114466

*Algebraic theory of lattices*, Prentice-Hall, Englewood Cliffs, N. J., 1973.

*Varieties of lattices: some open problems*, (to appear).

## Additional Information

- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**255**(1979), 277-300 - MSC: Primary 06C05; Secondary 06C20
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542881-0
- MathSciNet review: 542881