Markov cell structures for expanding maps in dimension two
HTML articles powered by AMS MathViewer
- by F. T. Farrell and L. E. Jones
- Trans. Amer. Math. Soc. 255 (1979), 315-327
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542883-4
- PDF | Request permission
Abstract:
Let $f: {M^2} \to {M^2}$ be an expanding self-immersion of a closed 2-manifold, then for some positive integer n, ${f^n}$ leaves invariant a cell structure on ${M^2}$. A similar result is true when M is a branched 2-manifold.References
- R. L. Adler and B. Weiss, Entropy, a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 1573–1576. MR 212156, DOI 10.1073/pnas.57.6.1573
- Rufus Bowen, Markov partitions for Axiom $\textrm {A}$ diffeomorphisms, Amer. J. Math. 92 (1970), 725–747. MR 277003, DOI 10.2307/2373370 —, Markov partitions are not smooth (to appear).
- F. T. Farrell and L. E. Jones, Markov cell structures, Bull. Amer. Math. Soc. 83 (1977), no. 4, 739–740. MR 436217, DOI 10.1090/S0002-9904-1977-14374-7
- F. T. Farrell and L. E. Jones, New attractors in hyperbolic dynamics, J. Differential Geometry 15 (1980), no. 1, 107–133 (1981). MR 602444, DOI 10.4310/jdg/1214435388
- John M. Franks, Invariant sets of hyperbolic toral automorphisms, Amer. J. Math. 99 (1977), no. 5, 1089–1095. MR 482846, DOI 10.2307/2374001
- S. G. Hancock, Orbits of paths under hyperbolic toral automorphisms, Dynamical systems, Vol. I—Warsaw, Astérisque, No. 49, Soc. Math. France, Paris, 1977, pp. 93–96. MR 0488166
- John G. Hocking and Gail S. Young, Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR 0125557
- K. Krzyżewski, On connection between expanding mappings and Markov chains, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 291–293 (English, with Russian summary). MR 289747
- Feliks Przytycki, Construction of invariant sets for Anosov diffeomorphisms and hyperbolic attractors, Studia Math. 68 (1980), no. 2, 199–213. MR 599146, DOI 10.4064/sm-68-2-199-213
- Michael Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175–199. MR 240824, DOI 10.2307/2373276
- Ja. G. Sinaĭ, Markov partitions and U-diffeomorphisms, Funkcional. Anal. i Priložen. 2 (1968), no. 1, 64–89 (Russian). MR 0233038
- R. F. Williams, Classification of one dimensional attractors, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 341–361. MR 0266227
- R. F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 169–203. MR 348794, DOI 10.1007/BF02684369
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 255 (1979), 315-327
- MSC: Primary 58F15
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542883-4
- MathSciNet review: 542883