## Markov cell structures for expanding maps in dimension two

HTML articles powered by AMS MathViewer

- by F. T. Farrell and L. E. Jones PDF
- Trans. Amer. Math. Soc.
**255**(1979), 315-327 Request permission

## Abstract:

Let $f: {M^2} \to {M^2}$ be an expanding self-immersion of a closed 2-manifold, then for some positive integer*n*, ${f^n}$ leaves invariant a cell structure on ${M^2}$. A similar result is true when

*M*is a branched 2-manifold.

## References

- R. L. Adler and B. Weiss,
*Entropy, a complete metric invariant for automorphisms of the torus*, Proc. Nat. Acad. Sci. U.S.A.**57**(1967), 1573–1576. MR**212156**, DOI 10.1073/pnas.57.6.1573 - Rufus Bowen,
*Markov partitions for Axiom $\textrm {A}$ diffeomorphisms*, Amer. J. Math.**92**(1970), 725–747. MR**277003**, DOI 10.2307/2373370
—, - F. T. Farrell and L. E. Jones,
*Markov cell structures*, Bull. Amer. Math. Soc.**83**(1977), no. 4, 739–740. MR**436217**, DOI 10.1090/S0002-9904-1977-14374-7 - F. T. Farrell and L. E. Jones,
*New attractors in hyperbolic dynamics*, J. Differential Geometry**15**(1980), no. 1, 107–133 (1981). MR**602444**, DOI 10.4310/jdg/1214435388 - John M. Franks,
*Invariant sets of hyperbolic toral automorphisms*, Amer. J. Math.**99**(1977), no. 5, 1089–1095. MR**482846**, DOI 10.2307/2374001 - S. G. Hancock,
*Orbits of paths under hyperbolic toral automorphisms*, Dynamical systems, Vol. I—Warsaw, Astérisque, No. 49, Soc. Math. France, Paris, 1977, pp. 93–96. MR**0488166** - John G. Hocking and Gail S. Young,
*Topology*, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR**0125557** - K. Krzyżewski,
*On connection between expanding mappings and Markov chains*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**19**(1971), 291–293 (English, with Russian summary). MR**289747** - Feliks Przytycki,
*Construction of invariant sets for Anosov diffeomorphisms and hyperbolic attractors*, Studia Math.**68**(1980), no. 2, 199–213. MR**599146**, DOI 10.4064/sm-68-2-199-213 - Michael Shub,
*Endomorphisms of compact differentiable manifolds*, Amer. J. Math.**91**(1969), 175–199. MR**240824**, DOI 10.2307/2373276 - Ja. G. Sinaĭ,
*Markov partitions and U-diffeomorphisms*, Funkcional. Anal. i Priložen**2**(1968), no. 1, 64–89 (Russian). MR**0233038** - R. F. Williams,
*Classification of one dimensional attractors*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 341–361. MR**0266227** - R. F. Williams,
*Expanding attractors*, Inst. Hautes Études Sci. Publ. Math.**43**(1974), 169–203. MR**348794**, DOI 10.1007/BF02684369

*Markov partitions are not smooth*(to appear).

## Additional Information

- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**255**(1979), 315-327 - MSC: Primary 58F15
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542883-4
- MathSciNet review: 542883