Diffeomorphisms and volume-preserving embeddings of noncompact manifolds
HTML articles powered by AMS MathViewer
- by R. E. Greene and K. Shiohama
- Trans. Amer. Math. Soc. 255 (1979), 403-414
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542888-3
- PDF | Request permission
Abstract:
The theorem of J. Moser that any two volume elements of equal total volume on a compact manifold are diffeomorphism-equivalent is extended to noncompact manifolds: A necessary and sufficient condition (equal total and same end behavior) is given for diffeomorphism equivalence of two volume forms on a noncompact manifold. Results on the existence of embeddings and immersions with the property of inducing a given volume form are also given. Generalizations to nonorientable manifolds and manifolds with boundary are discussed.References
- D. V. Anosov and A. B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obšč. 23 (1970), 3–36 (Russian). MR 0370662
- Augustin Banyaga, Formes-volume sur les variétés à bord, Enseign. Math. (2) 20 (1974), 127–131 (French). MR 358649 R. E. Greene and K. Shiohama, Volume-preserving diffeomorphisms and embeddings of noncompact manifolds. Notices Amer. Math. Soc. 23 (1976), Abstract A-446.
- M. L. Gromov, Smoothing and inversion of differential operators, Mat. Sb. (N.S.) 88(130) (1972), 382–441 (Russian). MR 0310924
- Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242–276. MR 119214, DOI 10.1090/S0002-9947-1959-0119214-4
- Jürgen Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286–294. MR 182927, DOI 10.1090/S0002-9947-1965-0182927-5
- John Nash, $C^1$ isometric imbeddings, Ann. of Math. (2) 60 (1954), 383–396. MR 65993, DOI 10.2307/1969840
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 255 (1979), 403-414
- MSC: Primary 58D10; Secondary 53C42
- DOI: https://doi.org/10.1090/S0002-9947-1979-0542888-3
- MathSciNet review: 542888