Subnormal operators quasisimilar to an isometry
HTML articles powered by AMS MathViewer
- by William W. Hastings
- Trans. Amer. Math. Soc. 256 (1979), 145-161
- DOI: https://doi.org/10.1090/S0002-9947-1979-0546912-3
- PDF | Request permission
Abstract:
Let $V = {V_0} \oplus {V_1}$ be an isometry, where ${V_0}$ is unitary and ${V_1}$ is a unilateral shift of finite multiplicity n. Let $S = {S_0} \oplus {S_1}$ be a subnormal operator where ${S_0} \oplus {S_1}$ is the normal decomposition of S into a normal operator ${S_0}$ and a completely nonnormal operator ${S_1}$. It is shown that S is quasisimilar to V if and only if ${S_0}$ is unitarily equivalent to ${V_0}$ and ${S_1}$ is quasisimilar to ${V_1}$. To prove this, a standard representation is developed for n-cyclic subnormal operators. Using this representation, the class of subnormal operators which are quasisimilar to ${V_1}$ is completely characterized.References
- Joseph Bram, Subnormal operators, Duke Math. J. 22 (1955), 75–94. MR 68129
- Arlen Brown, A version of multiplicity theory, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 129–160. MR 0420322
- Stuart Clary, Equality of spectra of quasi-similar hyponormal operators, Proc. Amer. Math. Soc. 53 (1975), no. 1, 88–90. MR 390824, DOI 10.1090/S0002-9939-1975-0390824-7 —, Quasisimilarity and subnormal operators, Ph. D. dissertation, Univ. of Michigan, 1973 (unpublished).
- R. G. Douglas, On the operator equation $S^{\ast } XT=X$ and related topics, Acta Sci. Math. (Szeged) 30 (1969), 19–32. MR 250106
- Kenneth Hoffman and Hugo Rossi, Extensions of positive weak$^{\ast }$-continous functionals, Duke Math. J. 34 (1967), 453–466. MR 225168
- T. B. Hoover, Hyperinvariant subspaces for $n$-normal operators, Acta Sci. Math. (Szeged) 32 (1971), 109–119. MR 308816
- T. B. Hoover, Quasi-similarity of operators, Illinois J. Math. 16 (1972), 678–686. MR 312304, DOI 10.1215/ijm/1256065551
- Richard V. Kadison and I. M. Singer, Three test problems in operator theory, Pacific J. Math. 7 (1957), 1101–1106. MR 92123, DOI 10.2140/pjm.1957.7.1101
- Thomas L. Kriete and David Trutt, On the Cesàro operator, Indiana Univ. Math. J. 24 (1974/75), 197–214. MR 350489, DOI 10.1512/iumj.1974.24.24017
- Bernard B. Morrel, A decomposition for some operators, Indiana Univ. Math. J. 23 (1973/74), 497–511. MR 343079, DOI 10.1512/iumj.1973.23.23042
- Joseph G. Stampfli and Bhushan L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), no. 4, 359–365. MR 410448, DOI 10.1512/iumj.1976.25.25031
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 256 (1979), 145-161
- MSC: Primary 47B20
- DOI: https://doi.org/10.1090/S0002-9947-1979-0546912-3
- MathSciNet review: 546912