On natural radii of $p$-adic convergence
HTML articles powered by AMS MathViewer
- by B. Dwork and P. Robba PDF
- Trans. Amer. Math. Soc. 256 (1979), 199-213 Request permission
Abstract:
We study the radius of p-adic convergence of power series which represent algebraic functions. We apply the p-adic theory of ordinary linear differential equations to show that the radius of convergence is the natural one, provided the degree of the function is less than p. The study of similar questions for solutions of linear differential equations is indicated.References
- Scott Shorey Brown, Bounds on transfer principles for algebraically closed and complete discretely valued fields, Mem. Amer. Math. Soc. 15 (1978), no. 204, iv+92. MR 494980, DOI 10.1090/memo/0204
- D. N. Clark, A note on the $p$-adic convergence of solutions of linear differential equations, Proc. Amer. Math. Soc. 17 (1966), 262–269. MR 186895, DOI 10.1090/S0002-9939-1966-0186895-8 G. Christol, Eléments algébriques, Groupe de Travail d’Analyse Ultra-métrique, (1$^{re}$ année: 1973/74), Exp. No. 14, Secrétariat Mathématique, Paris, 1975.
- P. Dienes, The Taylor series: an introduction to the theory of functions of a complex variable, Dover Publications, Inc., New York, 1957. MR 0089895
- B. Dwork and P. Robba, On ordinary linear $p$-adic differential equations, Trans. Amer. Math. Soc. 231 (1977), no. 1, 1–46. MR 447247, DOI 10.1090/S0002-9947-1977-0447247-8
- Nicholas Katz, Travaux de Dwork, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 409, Lecture Notes in Math., Vol. 317, Springer, Berlin, 1973, pp. 167–200 (French, with English summary). MR 0498577 A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper, Math. Z. 39 (1934), 269-404.
- Philippe Robba, Fonctions analytiques sur les corps valués ultramétriques complets, Prolongement analytique et algèbres de Banach ultramétriques, Astérisque, No. 10, Société Mathématique de France, Paris, 1973, pp. 109–218, 219–220 (French, with English summary). MR 0357841
- P. Robba, On the index of $p$-adic differential operators. I, Ann. of Math. (2) 101 (1975), 280–316. MR 364243, DOI 10.2307/1970992
- O. F. G. Schilling, The Theory of Valuations, Mathematical Surveys, No. 4, American Mathematical Society, New York, N. Y., 1950. MR 0043776, DOI 10.1090/surv/004
Additional Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 256 (1979), 199-213
- MSC: Primary 12B40; Secondary 34A25
- DOI: https://doi.org/10.1090/S0002-9947-1979-0546915-9
- MathSciNet review: 546915