Global ideal theory of meromorphic function fields
HTML articles powered by AMS MathViewer
- by Norman L. Alling
- Trans. Amer. Math. Soc. 256 (1979), 241-266
- DOI: https://doi.org/10.1090/S0002-9947-1979-0546917-2
- PDF | Request permission
Abstract:
It is shown that the ideal theories of the fields of all meromorphic functions on any two noncompact Riemann surfaces are isomorphic. Further, various new representation and factorization theorems are proved.References
- Norman L. Alling, The valuation theory of meromorphic function fields over open Riemann surfaces, Acta Math. 110 (1963), 79–96. MR 160781, DOI 10.1007/BF02391855
- Norman L. Alling, The valuation theory of meromorphic function fields, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 8–29. MR 0236404
- Norman L. Alling, Primary ideals in rings of analytic functions, Proc. Amer. Math. Soc. 53 (1975), no. 2, 423–427. MR 383082, DOI 10.1090/S0002-9939-1975-0383082-0
- Bernhard Banaschewski, Zur Idealtheorie der ganzen Funktionen, Math. Nachr. 19 (1958), 136–160 (German). MR 106286, DOI 10.1002/mana.19580190109
- Lipman Bers, On rings of analytic functions, Bull. Amer. Math. Soc. 54 (1948), 311–315. MR 24970, DOI 10.1090/S0002-9904-1948-08992-3
- Garrett Birkhoff, Lattice Theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. 25, American Mathematical Society, New York, N. Y., 1948. MR 0029876
- Herta Florack, Reguläre und meromorphe Funktionen auf nicht geschlossenen Riemannschen Flächen, Schr. Math. Inst. Univ. Münster 1948 (1948), no. 1, 34 (German). MR 37362
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Olaf Helmer, Divisibility properties of integral functions, Duke Math. J. 6 (1940), 345–356. MR 1851
- Melvin Henriksen, On the ideal structure of the ring of entire functions, Pacific J. Math. 2 (1952), 179–184. MR 47928, DOI 10.2140/pjm.1952.2.179
- Melvin Henriksen, On the prime ideals of the ring of entire functions, Pacific J. Math. 3 (1953), 711–720. MR 59479, DOI 10.2140/pjm.1953.3.711
- Edwin Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64 (1948), 45–99. MR 26239, DOI 10.1090/S0002-9947-1948-0026239-9 H. Iss’sa, On meromorphic function fields on a Stein variety, Ann. of Math. 83 (1966), 34-46.
- James Kelleher, Rings of meromorphic functions on non-compact Riemann surfaces, Canadian J. Math. 21 (1969), 284–300. MR 240321, DOI 10.4153/CJM-1969-030-3
- Simon Kochen, Ultraproducts in the theory of models, Ann. of Math. (2) 74 (1961), 221–261. MR 138548, DOI 10.2307/1970235 W. Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167 (1931), 160-196.
- O. F. G. Schilling, Ideal theory on open Riemann surfaces, Bull. Amer. Math. Soc. 52 (1946), 945–963. MR 19733, DOI 10.1090/S0002-9904-1946-08669-3
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581 —, Commutative algebra. II, Van Nostrand, Princeton, N. J., 1960.
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 256 (1979), 241-266
- MSC: Primary 30H05; Secondary 13J99, 30F20
- DOI: https://doi.org/10.1090/S0002-9947-1979-0546917-2
- MathSciNet review: 546917