An equivariant Wall obstruction theory
HTML articles powered by AMS MathViewer
- by Jenny A. Baglivo
- Trans. Amer. Math. Soc. 256 (1979), 305-324
- DOI: https://doi.org/10.1090/S0002-9947-1979-0546920-2
- PDF | Request permission
Abstract:
Let G be a finite group. For a certain class of CW-complexes with a G-action which are equivariantly dominated by a finite complex we define algebraic invariants to decide when the space is equivariantly homotopy or homology equivalent to a finite complex.References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Kenneth S. Brown, Homological criteria for finiteness, Comment. Math. Helv. 50 (1975), 129β135. MR 376820, DOI 10.1007/BF02565740
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Reprint of the 1962 original; A Wiley-Interscience Publication. MR 1013113
- Stephen M. Gersten, A product formula for Wallβs obstruction, Amer. J. Math. 88 (1966), 337β346. MR 198465, DOI 10.2307/2373197
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- Lowell Jones, The converse to the fixed point theorem of P. A. Smith. I, Ann. of Math. (2) 94 (1971), 52β68. MR 295361, DOI 10.2307/1970734
- Albert T. Lundell, A Bott map for non-stable homotopy of the unitary group, Topology 8 (1969), 209β217. MR 238319, DOI 10.1016/0040-9383(69)90011-1
- Takao Matumoto, On $G$-$\textrm {CW}$ complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363β374. MR 345103
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811 β, Uses of the fundamental group, Colloquium Lectures, 73rd Summer Meeting of the Amer. Math. Soc., University of Wisconsin, 1968.
- Dock Sang Rim, Modules over finite groups, Ann. of Math. (2) 69 (1959), 700β712. MR 104721, DOI 10.2307/1970033
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$-complexes, Ann. of Math. (2) 81 (1965), 56β69. MR 171284, DOI 10.2307/1970382
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$ complexes. II, Proc. Roy. Soc. London Ser. A 295 (1966), 129β139. MR 211402, DOI 10.1098/rspa.1966.0230
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 256 (1979), 305-324
- MSC: Primary 57S17; Secondary 55P99
- DOI: https://doi.org/10.1090/S0002-9947-1979-0546920-2
- MathSciNet review: 546920