Hypoconvexity and essentially $n$-normal operators
HTML articles powered by AMS MathViewer
- by Norberto Salinas
- Trans. Amer. Math. Soc. 256 (1979), 325-351
- DOI: https://doi.org/10.1090/S0002-9947-1979-0546921-4
- PDF | Request permission
Abstract:
In this paper a classifying structure for the class of essentially n-normal operators on a separable Hilbert space is introduced, and various invariance properties of this classifying structure are studied. The notion of a hypoconvex subset of the algebra ${\mathcal {M}_n}$ of all complex $n \times n$ matrices is defined, and it is shown that the set of all equivalence classes of essentially n-normal operators (under a natural equivalence relation), whose reducing essential $n \times n$ matricial spectrum is a given hypoconvex set, forms an abelian group. It is also shown that this correspondence between hypoconvex subsets of ${\mathcal {M}_n}$ and abelian groups is a homotopy invariant, covariant functor. This result is then used to prove that Toeplitz operators (on strongly pseudoconvex domains) which have homotopic continuous matricial symbols, are unitarily equivalent up to compact perturbation.References
- Tage Bai Andersen, Linear extensions, projections, and split faces, J. Functional Analysis 17 (1974), 161–173. MR 0355560, DOI 10.1016/0022-1236(74)90010-x
- W. Arveson, A note on essentially normal operators, Proc. Roy. Irish Acad. Sect. A 74 (1974), 143–146. Spectral Theory Symposium (Trinity College, Dublin, 1974). MR 365217
- William Arveson, Notes on extensions of $C^{^*}$-algebras, Duke Math. J. 44 (1977), no. 2, 329–355. MR 438137
- M. F. Atiyah, Algebraic topology and elliptic operators, Comm. Pure Appl. Math. 20 (1967), 237–249. MR 211418, DOI 10.1002/cpa.3160200202
- Stefan Bergman, The kernel function and conformal mapping, Second, revised edition, Mathematical Surveys, No. V, American Mathematical Society, Providence, R.I., 1970. MR 0507701
- Raoul Bott, The periodicity theorem for the classical groups and some of its applications, Advances in Math. 4 (1970), 353–411 (1970). MR 259904, DOI 10.1016/0001-8708(70)90030-7 L. Boutet de Monvel et J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Preprint.
- Arlen Brown, The unitary equivalence of binormal operators, Amer. J. Math. 76 (1954), 414–434. MR 62355, DOI 10.2307/2372582
- Lawrence G. Brown, Extensions and the structure of $C^*$-algebras, Symposia Mathematica, Vol. XX (Convegno sulle Algebre $C^*$ e loro Applicazioni in Fisica Teorica, Convegno sulla Teoria degli Operatori Indice e Teoria $K$, INDAM, Rome, 1975) Academic Press, London, 1976, pp. 539–566. MR 0458197
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{\ast }$-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 58–128. MR 0380478
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324. MR 458196, DOI 10.2307/1970999
- John W. Bunce and James A. Deddens, Irreducible representations of the $C^{\ast }$-algebra generated by an $n$-normal operator, Trans. Amer. Math. Soc. 171 (1972), 301–307. MR 306930, DOI 10.1090/S0002-9947-1972-0306930-0
- John Bunce and Norberto Salinas, Completely positive maps on $C^*$-algebras and the left matricial spectra of an operator, Duke Math. J. 43 (1976), no. 4, 747–774. MR 430793
- J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. (2) 42 (1941), 839–873. MR 5790, DOI 10.2307/1968771
- L. A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973/74), 433–439. MR 322595, DOI 10.1512/iumj.1973.23.23036
- Man Duen Choi and Edward G. Effros, The completely positive lifting problem for $C^*$-algebras, Ann. of Math. (2) 104 (1976), no. 3, 585–609. MR 417795, DOI 10.2307/1970968 J. Dixmier, Les ${C^\ast }$-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969.
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
- R. G. Douglas, The relation of Ext to $K$-theory, Symposia Mathematica, Vol. XX (Convegno sulle Algebre $C^*$ e loro Applicazioni in Fisica Teorica, Convegno sulla Teoria degli Operatori Indice e Teoria $K$, INDAM, Rome, 1975) Academic Press, London, 1976, pp. 513–529. MR 0632120
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI 10.1007/BF02391775
- Jerome Kaminker and Claude Schochet, Topological obstructions to perturbations of pairs of operators, $K$-theory and operator algebras (Proc. Conf., Univ. Georgia, Athens, Ga., 1975) Lecture Notes in Math., Vol. 575, Springer, Berlin, 1977, pp. 70–77. MR 0478136
- Norberto Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149–158. MR 294694, DOI 10.1007/BF01419622
- Vern Paulsen, Continuous canonical forms for matrices under unitary equivalence, Pacific J. Math. 76 (1978), no. 1, 129–142. MR 499640, DOI 10.2140/pjm.1978.76.129
- Vern Paulsen, Weak compalence invariants for essentially $n$-normal operators, Amer. J. Math. 101 (1979), no. 5, 979–1006. MR 546299, DOI 10.2307/2374122
- Carl Pearcy and Norberto Salinas, Finite dimensional representations of $C^{\ast }$-algebras and the reducing matricial spectra of an operator, Rev. Roumaine Math. Pures Appl. 20 (1975), no. 5, 567–598. MR 390786
- Carl Pearcy and Norberto Salinas, The reducing essential matricial spectra of an operator, Duke Math. J. 42 (1975), no. 3, 423–434. MR 380454
- Carl Pearcy and Norberto Salinas, Extensions of $C^*$-algebras and the reducing essential matricial spectra of an operator, $K$-theory and operator algebras (Proc. Conf., Univ. Georgia, Athens, Ga., 1975) Lecture Notes in Math., Vol. 575, Springer, Berlin, 1977, pp. 96–112. MR 0467334
- Norberto Salinas, Reducing essential eigenvalues, Duke Math. J. 40 (1973), 561–580. MR 390816
- Norberto Salinas, Extensions of $C^*$-algebras and essentially $n$-normal operators, Bull. Amer. Math. Soc. 82 (1976), no. 1, 143–146. MR 633372, DOI 10.1090/S0002-9904-1976-13999-7
- Norberto Salinas, Homotopy invariance of $\textrm {Ext}({\cal A})$, Duke Math. J. 44 (1977), no. 4, 777–794. MR 512388
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- U. Venugopalkrishna, Fredholm operators associated with strongly pseudoconvex domains in $C^{n}$, J. Functional Analysis 9 (1972), 349–373. MR 0315502, DOI 10.1016/0022-1236(72)90007-9
- Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97–113. MR 415338 H. Weyl, Über beschrankte quadratischen Formen deren Differenz vollstetig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 256 (1979), 325-351
- MSC: Primary 47B15; Secondary 46M20
- DOI: https://doi.org/10.1090/S0002-9947-1979-0546921-4
- MathSciNet review: 546921