Milnor’s $\bar \mu$-invariants and Massey products
Author:
Richard Porter
Journal:
Trans. Amer. Math. Soc. 257 (1980), 39-71
MSC:
Primary 57Q45; Secondary 55S30
DOI:
https://doi.org/10.1090/S0002-9947-1980-0549154-9
MathSciNet review:
549154
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The main result of this paper gives an interpretation of Milnor’s $\overline \mu$-invariants of a link in terms of Massey products in the complement of the link. The approach presented here can be used to give topological proofs of results about the $\overline \mu$-invariants obtained by Milnor using different methods.
- K. T. Chen, Commutator calculus and link invariants, Proc. Amer. Math. Soc. 3 (1952), 44–55. MR 46361, DOI https://doi.org/10.1090/S0002-9939-1952-0046361-7
- Kuo-Tsai Chen, Isotopy invariants of links, Ann. of Math. (2) 56 (1952), 343–353. MR 49557, DOI https://doi.org/10.2307/1969803
- Kuo-tsai Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math. (2) 97 (1973), 217–246. MR 380859, DOI https://doi.org/10.2307/1970846
- Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. MR 382702, DOI https://doi.org/10.1007/BF01389853 R. Fenn and P. Taylor, Generalized Borromean rings and higher order linking numbers (to appear).
- William G. Dwyer, Homology, Massey products and maps between groups, J. Pure Appl. Algebra 6 (1975), no. 2, 177–190. MR 385851, DOI https://doi.org/10.1016/0022-4049%2875%2990006-7 R. M. Goresky, Geometric cohomology and homology of stratified objects, Ph. D. Thesis, Brown University, 1976.
- V. K. A. M. Gugenheim and J. Peter May, On the theory and applications of differential torsion products, American Mathematical Society, Providence, R.I., 1974. Memoirs of the American Mathematical Society, No. 142. MR 0394720
- M. A. Gutiérrez, The $\overline \mu $-invariants for groups, Proc. Amer. Math. Soc. 55 (1976), no. 2, 293–298. MR 422328, DOI https://doi.org/10.1090/S0002-9939-1976-0422328-8
- David Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431–449. MR 202136, DOI https://doi.org/10.1090/S0002-9947-1966-0202136-1 S. Lefschetz, Topology, Amer. Math. Soc. Colloq. Publ., no. 12, Amer. Math. Soc., Providence, R. I., 1930.
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1966. MR 0207802
- W. S. Massey, Higher order linking numbers, Conf. on Algebraic Topology (Univ. of Illinois at Chicago Circle, Chicago, Ill., 1968) Univ. of Illinois at Chicago Circle, Chicago, Ill., 1969, pp. 174–205. MR 0254832
- J. Peter May, Matric Massey products, J. Algebra 12 (1969), 533–568. MR 238929, DOI https://doi.org/10.1016/0021-8693%2869%2990027-1
- Clint McCrory, Cone complexes and PL transversality, Trans. Amer. Math. Soc. 207 (1975), 269–291. MR 400243, DOI https://doi.org/10.1090/S0002-9947-1975-0400243-7 ---, Poincaré duality in spaces with singularities (to appear).
- John Milnor, Link groups, Ann. of Math. (2) 59 (1954), 177–195. MR 71020, DOI https://doi.org/10.2307/1969685
- John Milnor, Isotopy of links. Algebraic geometry and topology, A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 280–306. MR 0092150 E. J. O’Neill, Higher order cohomology products and links, Ph. D. Thesis, Yale University, 1976.
- Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425–505 (French). MR 45386, DOI https://doi.org/10.2307/1969485
- John Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170–181. MR 175956, DOI https://doi.org/10.1016/0021-8693%2865%2990017-7
- John R. Stallings, Quotients of the powers of the augmentation ideal in a group ring, Knots, groups, and $3$-manifolds (Papers dedicated to the memory of R. H. Fox), Princeton Univ. Press, Princeton, N.J., 1975, pp. 101–118. Ann. of Math. Studies, No. 84. MR 0379685
- A. W. Tucker, An abstract approach to manifolds, Ann. of Math. (2) 34 (1933), no. 2, 191–243. MR 1503105, DOI https://doi.org/10.2307/1968201
- Hassler Whitney, On products in a complex, Ann. of Math. (2) 39 (1938), no. 2, 397–432. MR 1503416, DOI https://doi.org/10.2307/1968795
- S. Wylie, Duality and intersection in general complexes, Proc. London Math. Soc. (2) 46 (1940), 174–198. MR 1904, DOI https://doi.org/10.1112/plms/s2-46.1.174
Retrieve articles in Transactions of the American Mathematical Society with MSC: 57Q45, 55S30
Retrieve articles in all journals with MSC: 57Q45, 55S30
Additional Information
Keywords:
Massey products,
links,
Magnus expansion,
Alexander and Lefschetz duality
Article copyright:
© Copyright 1980
American Mathematical Society