Rotundity in Lebesgue-Bochner function spaces
HTML articles powered by AMS MathViewer
- by Mark A. Smith and Barry Turett
- Trans. Amer. Math. Soc. 257 (1980), 105-118
- DOI: https://doi.org/10.1090/S0002-9947-1980-0549157-4
- PDF | Request permission
Abstract:
This paper concerns the isometric theory of the Lebesgue-Bochner function space ${L^p}(\mu , X)$ where $1 < p < \infty$. Specifically, the question of whether a geometrical property lifts from X to ${L^p} (\mu , X)$ is examined. Positive results are obtained for the properties local uniform rotundity, weak uniform rotundity, uniform rotundity in each direction, midpoint local uniform rotundity, and B-convexity. However, it is shown that the Radon-Riesz property does not lift from X to ${L^p} (\mu , X)$. Consequently, Lebesgue-Bochner function spaces with the Radon-Riesz property are examined more closely.References
- K. W. Anderson, Midpoint local uniform convexity, and other geometric properties of Banach spaces, Dissertation, University of Illinois, 1960.
- Anatole Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Amer. Math. Soc. 13 (1962), 329–334. MR 133857, DOI 10.1090/S0002-9939-1962-0133857-9
- S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math. (2) 39 (1938), no. 4, 913–944. MR 1503445, DOI 10.2307/1968472
- Mahlon M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 504–507. MR 4068, DOI 10.1090/S0002-9904-1941-07499-9
- Mahlon M. Day, Strict convexity and smoothness of normed spaces, Trans. Amer. Math. Soc. 78 (1955), 516–528. MR 67351, DOI 10.1090/S0002-9947-1955-0067351-1
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- A. L. Garkavi, On the optimal net and best cross-section of a set in a normed space, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87–106 (Russian). MR 0136969
- Daniel P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125 (1966), 114–146. MR 205031, DOI 10.1090/S0002-9947-1966-0205031-7
- Robert C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542–550. MR 173932, DOI 10.2307/1970663
- I. E. Leonard, Banach sequence spaces, J. Math. Anal. Appl. 54 (1976), no. 1, 245–265. MR 420216, DOI 10.1016/0022-247X(76)90248-1
- I. E. Leonard and K. Sundaresan, Geometry of Lebesgue-Bochner function spaces—smoothness, Bull. Amer. Math. Soc. 79 (1973), 546–549. MR 326376, DOI 10.1090/S0002-9904-1973-13195-7
- A. R. Lovaglia, Locally uniformly convex Banach spaces, Trans. Amer. Math. Soc. 78 (1955), 225–238. MR 66558, DOI 10.1090/S0002-9947-1955-0066558-7
- E. J. McShane, Linear functionals on certain Banach spaces, Proc. Amer. Math. Soc. 1 (1950), 402–408. MR 36448, DOI 10.1090/S0002-9939-1950-0036448-5 J. Radon, Theorie und Anwendungen der absolut additiven Mengen funktionen, Sitzungsber. Akad. Wiss. Wien 122 (1913), 1295-1438. F. Riesz, Sur la convergence en moyenne. I, II, Acta Sci. Math. (Szeged) 4 (1928-1929), 58-64, 182-185.
- Haskell P. Rosenthal, Some applications of $p$-summing operators to Banach space theory, Studia Math. 58 (1976), no. 1, 21–43. MR 430749, DOI 10.4064/sm-58-1-21-43
- Mark A. Smith, Products of Banach spaces that are uniformly rotund in every direction, Pacific J. Math. 70 (1977), no. 1, 215–219. MR 463892, DOI 10.2140/pjm.1977.73.215
- Mark A. Smith, Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), no. 2, 155–161. MR 482080, DOI 10.1007/BF01421923
- V. Šmulian, Sur la dérivabilité de la norme dans l’espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N.S.) 27 (1940), 643–648 (French). MR 0002704
- Kondagunta Sundaresan, Uniformly non-$l_{n}{}^{(1)}$ Orlicz spaces, Israel J. Math. 3 (1965), 139–146. MR 194876, DOI 10.1007/BF02759746
- Kondagunta Sundaresan, Uniformly non-square Orlicz spaces, Nieuw Arch. Wisk. (3) 14 (1966), 31–39. MR 193497
- Kondagunta Sundaresan, The Radon-Nikodým theorem for Lebesgue-Bochner function spaces, J. Functional Analysis 24 (1977), no. 3, 276–279. MR 0450956, DOI 10.1016/0022-1236(77)90058-1
- Barry Turett and J. J. Uhl Jr., $L_{p}(\mu ,X)$ $(1<p<\infty )$ has the Radon-Nikodým property if $X$ does by martingales, Proc. Amer. Math. Soc. 61 (1976), no. 2, 347–350. MR 423069, DOI 10.1090/S0002-9939-1976-0423069-3
- V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. (Rozprawy Mat.) 87 (1971), 33 pp. (errata insert). MR 300060
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 257 (1980), 105-118
- MSC: Primary 46E40; Secondary 46B20
- DOI: https://doi.org/10.1090/S0002-9947-1980-0549157-4
- MathSciNet review: 549157