Diophantine sets over algebraic integer rings. II
HTML articles powered by AMS MathViewer
- by J. Denef
- Trans. Amer. Math. Soc. 257 (1980), 227-236
- DOI: https://doi.org/10.1090/S0002-9947-1980-0549163-X
- PDF | Request permission
Abstract:
We prove that Z is diophantine over the ring of algebraic integers in any totally real number field or quadratic extension of a totally real number field.References
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
- Martin Davis, Hilbert’s tenth problem is unsolvable, Amer. Math. Monthly 80 (1973), 233–269. MR 317916, DOI 10.2307/2318447
- Martin Davis, Yuri Matijasevič, and Julia Robinson, Hilbert’s tenth problem: Diophantine equations: positive aspects of a negative solution, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Amer. Math. Soc., Providence, R.I., 1976, pp. 323–378. (loose erratum). MR 0432534
- J. Denef, Hilbert’s tenth problem for quadratic rings, Proc. Amer. Math. Soc. 48 (1975), 214–220. MR 360513, DOI 10.1090/S0002-9939-1975-0360513-3 —, Diophantische verzamelingen over ringen van algebraische gehelen, Thesis, Leuven, 1976.
- J. Denef and L. Lipshitz, Diophantine sets over some rings of algebraic integers, J. London Math. Soc. (2) 18 (1978), no. 3, 385–391. MR 518221, DOI 10.1112/jlms/s2-18.3.385 G. Hardy and E. Wright, An introduction to the theory of numbers, Oxford Univ. Press, Oxford, 1960. Yu. Matijasevič, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191 (1970), 279-282 (Russian); improved English translation: Soviet Math. Dokl. 11 (1970), 354-357.
- Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266. MR 444670, DOI 10.1007/BF01389815
- O. T. O’Meara, Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Band 117, Springer-Verlag, New York-Heidelberg, 1971. Second printing, corrected. MR 0347768
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 257 (1980), 227-236
- MSC: Primary 12L05; Secondary 10N05
- DOI: https://doi.org/10.1090/S0002-9947-1980-0549163-X
- MathSciNet review: 549163