On maximally elliptic singularities
HTML articles powered by AMS MathViewer
- by Stephen Shing Toung Yau
- Trans. Amer. Math. Soc. 257 (1980), 269-329
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552260-6
- PDF | Request permission
Abstract:
Let p be the unique singularity of a normal two-dimensional Stein space V. Let m be the maximal ideal in $_V{\mathcal {O}_p}$, the local ring of germs of holomorphic functions at p. We first define the maximal ideal cycle which serves to identify the maximal ideal. We give an “upper” estimate for maximal ideal cycle in terms of the canonical divisor which is computable via the topological information, i.e., the weighted dual graph of the singularity. Let $M \to V$ be a resolution of V. It is known that $h = \dim {H^1}(M, \mathcal {O})$ is independent of resolution. Rational singularities in the sense of M. Artin are equivalent to $h = 0$. Minimally elliptic singularity in the sense of Laufer is equivalent to saying that $h = 1$ and $_V{\mathcal {O}_p}$ is Gorenstein. In this paper we develop a theory for a general class of weakly elliptic singularities which satisfy a maximality condition. Maximally elliptic singularities may have h arbitrarily large. Also minimally elliptic singlarities are maximally elliptic singularities. We prove that maximally elliptic singularities are Gorenstein singularities. We are able to identify the maximal ideal. Therefore, the important invariants of the singularities (such as multiplicity) are extracted from the topological information. For weakly elliptic singularities we introduce a new concept called “elliptic sequence". This elliptic sequence is defined purely topologically, i.e., it can be computed explicitly via the intersection matrix. We prove that —K, where K is the canonical divisor, is equal to the summation of the elliptic sequence. Moreover, the analytic data $\dim {H^1}(M, \mathcal {O})$ is bounded by the topological data, the length of elliptic sequence. We also prove that $h = 2$ and $_V{\mathcal {O}_p}$ Gorenstein implies that the singularity is weakly elliptic.References
- Shreeram Shankar Abhyankar, Resolution of singularities of embedded algebraic surfaces, Pure and Applied Mathematics, Vol. 24, Academic Press, New York-London, 1966. MR 0217069
- Michael Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129–136. MR 199191, DOI 10.2307/2373050
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- Egbert Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1967/68), 336–358 (German). MR 222084, DOI 10.1007/BF01425318
- Egbert Brieskorn, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann. 166 (1966), 76–102 (German). MR 206973, DOI 10.1007/BF01361440 P. Du Val, On isolated singularities of surfaces which do not affect the condition of adjunction, Proc. Cambridge Philos. Soc. 30 (1933/34), 453-491.
- Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368 (German). MR 137127, DOI 10.1007/BF01441136
- Hans Grauert and Oswald Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Several Complex Variables, I (Proc. Conf., Univ. of Maryland, College Park, Md., 1970) Springer, Berlin, 1970, pp. 97–109 (German). MR 0273066
- R. C. Gunning, Lectures on Riemann surfaces, Princeton Mathematical Notes, Princeton University Press, Princeton, N.J., 1966. MR 0207977
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- F. Hirzebruch, The Hilbert modular group, resolution of the singularities at the cusps and related problems, Séminaire Bourbaki, 23ème année (1970/1971), Lecture Notes in Math., Vol. 244, Springer, Berlin, 1971, pp. Exp. No. 396, pp. 275–288. MR 0417187
- Friedrich Hirzebruch, Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953), 1–22 (German). MR 62842, DOI 10.1007/BF01343146
- F. Hirzebruch, W. D. Neumann, and S. S. Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Applied Mathematics, Vol. 4, Marcel Dekker, Inc., New York, 1971. Appendix II by W. Scharlau. MR 0341499 U. Karras, Dissertation, Bonn, 1973. —, Eigenshaften der lokalen Ringe in zweidimensionaten Spetzen, Math. Ann. (to appear).
- D. Kirby, The structure of an isolated multiple point of a surface. I, Proc. London Math. Soc. (3) 6 (1956), 597–609. MR 87202, DOI 10.1112/plms/s3-6.4.597 —, The structure of an isolated multiple point of a surface. II, Proc. London Math. Soc. 7 (1957), 1-28.
- Henry B. Laufer, Normal two-dimensional singularities, Annals of Mathematics Studies, No. 71, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0320365
- Henry B. Laufer, On rational singularities, Amer. J. Math. 94 (1972), 597–608. MR 330500, DOI 10.2307/2374639
- Henry B. Laufer, Deformations of resolutions of two-dimensional singularities, Rice Univ. Stud. 59 (1973), no. 1, 53–96. MR 367277
- Henry B. Laufer, Taut two-dimensional singularities, Math. Ann. 205 (1973), 131–164. MR 333238, DOI 10.1007/BF01350842 —, On $\mu$ for surface singularities (to appear).
- Henry B. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), no. 6, 1257–1295. MR 568898, DOI 10.2307/2374025
- Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195–279. MR 276239
- David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5–22. MR 153682
- Peter Orlik and Philip Wagreich, Isolated singularities of algebraic surfaces with C$^{\ast }$ action, Ann. of Math. (2) 93 (1971), 205–228. MR 284435, DOI 10.2307/1970772
- Peter Orlik and Philip Wagreich, Singularities of algebraic surfaces with $C^{\ast }$ action, Math. Ann. 193 (1971), 121–135. MR 292832, DOI 10.1007/BF02052820
- Oswald Riemenschneider, Über die Anwendung algebraischer Methoden in der Deformationstheorie komplexer Räume, Math. Ann. 187 (1970), 40–55 (German). MR 261039, DOI 10.1007/BF01368159
- Kyoji Saito, Einfach-elliptische Singularitäten, Invent. Math. 23 (1974), 289–325 (German). MR 354669, DOI 10.1007/BF01389749
- Jean-Pierre Serre, Groupes algébriques et corps de classes, Publications de l’Institut de Mathématique de l’Université de Nancago, VII, Hermann, Paris, 1959 (French). MR 0103191 —, Sur les modules projectifs, Sém. Dubrieil 1960/61.
- Yum-tong Siu, Analytic sheaf cohomology groups of dimension $n$ of $n-dimensional$ $complex$ $spaces.$, Trans. Amer. Math. Soc. 143 (1969), 77–94. MR 252684, DOI 10.1090/S0002-9947-1969-0252684-6 G. Tyurina, Absolutely isolatedness of rational singularities and triple rational points, Functional Anal. Appl. 2 (1968), 324-332.
- G. N. Tjurina, The rigidity of rationally contractible curves on a surface, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 943–970 (Russian). MR 0246880
- G. N. Tjurina, On a type of contractible curves, Dokl. Akad. Nauk SSSR 173 (1967), 529–531 (Russian). MR 0215849
- Philip Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419–454. MR 291170, DOI 10.2307/2373333
- Philip Wagreich, Singularities of complex surfaces with solvable local fundamental group, Topology 11 (1971), 51–72. MR 285536, DOI 10.1016/0040-9383(72)90022-5
- Jonathan M. Wahl, Equisingular deformations of plane algebroid curves, Trans. Amer. Math. Soc. 193 (1974), 143–170. MR 419439, DOI 10.1090/S0002-9947-1974-0419439-2
- Oscar Zariski, A simplified proof for the resolution of singularities of an algebraic surface, Ann. of Math. (2) 43 (1942), 583–593. MR 6851, DOI 10.2307/1968814
- Oscar Zariski, Studies in equisingularity. I. Equivalent singularities of plane algebroid curves, Amer. J. Math. 87 (1965), 507–536. MR 177985, DOI 10.2307/2373019 —, Algebraic surfaces, Springer, Berlin, 1935.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 257 (1980), 269-329
- MSC: Primary 32C45; Secondary 14J17, 32B30
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552260-6
- MathSciNet review: 552260