The dependence of the generalized Radon transform on defining measures
HTML articles powered by AMS MathViewer
- by Eric Todd Quinto
- Trans. Amer. Math. Soc. 257 (1980), 331-346
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552261-8
- PDF | Request permission
Abstract:
Guillemin proved that the generalized Radon transform R and its dual ${R^t}$ are Fourier integral operators and that ${R^t}R$ is an elliptic pseudodifferential operator. In this paper we investigate the dependence of the Radon transform on the defining measures. In the general case we calculate the symbol of ${R^t}R$ as a pseudodifferential operator in terms of the measures and give a necessary condition on the defining measures for ${R^t}R$ to be invertible by a differential operator. Then we examine the Radon transform on points and hyperplanes in ${\textbf {R}^n}$ with general measures and we calculate the symbol of ${R^t}R$ in terms of the defining measures. Finally, if ${R^t}R$ is a translation invariant operator on ${\textbf {R}^n}$ then we prove that ${R^t}R$ is invertible and that our condition is equivalent to ${({R^t}R)^{ - 1}}$ being a differential operator.References
- Paul Funk, Über eine geometrische Anwendung der Abelschen Integralgleichung, Math. Ann. 77 (1915), no. 1, 129–135 (German). MR 1511851, DOI 10.1007/BF01456824 I. M. Gelfand and M. I. Graev, The geometry of homogeneous spaces, group representations in homogeneous spaces and questions in integral geometry related to them, Amer. Math. Soc. Transl. 37 (1964), 351-429.
- I. M. Gel′fand, M. I. Graev, and Z. Ja. Šapiro, Differential forms and integral geometry, Funkcional. Anal. i Priložen. 3 (1969), no. 2, 24–40 (Russian). MR 0244919
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR 0435831
- I. M. Gel′fand and Z. Ya. Šapiro, Homogeneous functions and their extensions, Amer. Math. Soc. Transl. (2) 8 (1958), 21–85. MR 0094547
- I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 0166596 V. Guillemin, On some results of Gelfand in integral geometry, Lecture notes, Symposium on Global Analysis, Durham, N. C., July 1976.
- Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, Mathematical Surveys, No. 14, American Mathematical Society, Providence, R.I., 1977. MR 0516965
- Sigurđur Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239–299. MR 117681, DOI 10.1007/BF02564248
- Sigurdur Helgason, A duality in integral geometry; some generalizations of the Radon transform, Bull. Amer. Math. Soc. 70 (1964), 435–446. MR 166795, DOI 10.1090/S0002-9904-1964-11147-2
- Sigurđur Helgason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153–180. MR 172311, DOI 10.1007/BF02391776
- Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/0001-8708(70)90037-X
- Sigurdur Helgason, The surjectivity of invariant differential operators on symmetric spaces. I, Ann. of Math. (2) 98 (1973), 451–479. MR 367562, DOI 10.2307/1970914
- Lars Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79–183. MR 388463, DOI 10.1007/BF02392052
- Fritz John, Bestimmung einer Funktion aus ihren Integralen Über gewisse Mannigfaltigkeiten, Math. Ann. 109 (1934), no. 1, 488–520 (German). MR 1512906, DOI 10.1007/BF01449151
- Donald Ludwig, The Radon transform on euclidean space, Comm. Pure Appl. Math. 19 (1966), 49–81. MR 190652, DOI 10.1002/cpa.3160190207 E. Quinto, On the locality and invertibility of Radon transforms, Ph. D. Thesis, M.I.T., Cambridge, Mass., 1978. J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfalligkeiten, Ber. Verh. Sächs. Akad. 69 (1917), 262-277.
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528 V. I. Semyanistyi, On some integral transforms in Euclidean space, Soviet Math. Dokl. 1 (1960), 1114-1117.
- V. I. Semjanistyĭ, Homogeneous functions and some problems of integral geometry in the spaces of constant curvature, Soviet Math. Dokl. 2 (1961), 59–62. MR 0133006
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 257 (1980), 331-346
- MSC: Primary 58G15; Secondary 44A99
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552261-8
- MathSciNet review: 552261