## The dependence of the generalized Radon transform on defining measures

HTML articles powered by AMS MathViewer

- by Eric Todd Quinto PDF
- Trans. Amer. Math. Soc.
**257**(1980), 331-346 Request permission

## Abstract:

Guillemin proved that the generalized Radon transform*R*and its dual ${R^t}$ are Fourier integral operators and that ${R^t}R$ is an elliptic pseudodifferential operator. In this paper we investigate the dependence of the Radon transform on the defining measures. In the general case we calculate the symbol of ${R^t}R$ as a pseudodifferential operator in terms of the measures and give a necessary condition on the defining measures for ${R^t}R$ to be invertible by a differential operator. Then we examine the Radon transform on points and hyperplanes in ${\textbf {R}^n}$ with general measures and we calculate the symbol of ${R^t}R$ in terms of the defining measures. Finally, if ${R^t}R$ is a translation invariant operator on ${\textbf {R}^n}$ then we prove that ${R^t}R$ is invertible and that our condition is equivalent to ${({R^t}R)^{ - 1}}$ being a differential operator.

## References

- Paul Funk,
*Über eine geometrische Anwendung der Abelschen Integralgleichung*, Math. Ann.**77**(1915), no. 1, 129–135 (German). MR**1511851**, DOI 10.1007/BF01456824
I. M. Gelfand and M. I. Graev, - I. M. Gel′fand, M. I. Graev, and Z. Ja. Šapiro,
*Differential forms and integral geometry*, Funkcional. Anal. i Priložen.**3**(1969), no. 2, 24–40 (Russian). MR**0244919** - I. M. Gel′fand and G. E. Shilov,
*Generalized functions. Vol. 1*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR**0435831** - I. M. Gel′fand and Z. Ya. Šapiro,
*Homogeneous functions and their extensions*, Amer. Math. Soc. Transl. (2)**8**(1958), 21–85. MR**0094547** - I. M. Gel’fand and G. E. Shilov,
*Generalized functions. Vol. I: Properties and operations*, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR**0166596**
V. Guillemin, - Victor Guillemin and Shlomo Sternberg,
*Geometric asymptotics*, Mathematical Surveys, No. 14, American Mathematical Society, Providence, R.I., 1977. MR**0516965** - Sigurđur Helgason,
*Differential operators on homogeneous spaces*, Acta Math.**102**(1959), 239–299. MR**117681**, DOI 10.1007/BF02564248 - Sigurdur Helgason,
*A duality in integral geometry; some generalizations of the Radon transform*, Bull. Amer. Math. Soc.**70**(1964), 435–446. MR**166795**, DOI 10.1090/S0002-9904-1964-11147-2 - Sigurđur Helgason,
*The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds*, Acta Math.**113**(1965), 153–180. MR**172311**, DOI 10.1007/BF02391776 - Sigurđur Helgason,
*A duality for symmetric spaces with applications to group representations*, Advances in Math.**5**(1970), 1–154 (1970). MR**263988**, DOI 10.1016/0001-8708(70)90037-X - Sigurdur Helgason,
*The surjectivity of invariant differential operators on symmetric spaces. I*, Ann. of Math. (2)**98**(1973), 451–479. MR**367562**, DOI 10.2307/1970914 - Lars Hörmander,
*Fourier integral operators. I*, Acta Math.**127**(1971), no. 1-2, 79–183. MR**388463**, DOI 10.1007/BF02392052 - Fritz John,
*Bestimmung einer Funktion aus ihren Integralen Über gewisse Mannigfaltigkeiten*, Math. Ann.**109**(1934), no. 1, 488–520 (German). MR**1512906**, DOI 10.1007/BF01449151 - Donald Ludwig,
*The Radon transform on euclidean space*, Comm. Pure Appl. Math.**19**(1966), 49–81. MR**190652**, DOI 10.1002/cpa.3160190207
E. Quinto, - Walter Rudin,
*Real and complex analysis*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210528**
V. I. Semyanistyi, - V. I. Semjanistyĭ,
*Homogeneous functions and some problems of integral geometry in the spaces of constant curvature*, Soviet Math. Dokl.**2**(1961), 59–62. MR**0133006**

*The geometry of homogeneous spaces, group representations in homogeneous spaces and questions in integral geometry related to them*, Amer. Math. Soc. Transl.

**37**(1964), 351-429.

*On some results of Gelfand in integral geometry*, Lecture notes, Symposium on Global Analysis, Durham, N. C., July 1976.

*On the locality and invertibility of Radon transforms*, Ph. D. Thesis, M.I.T., Cambridge, Mass., 1978. J. Radon,

*Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfalligkeiten*, Ber. Verh. Sächs. Akad.

**69**(1917), 262-277.

*On some integral transforms in Euclidean space*, Soviet Math. Dokl.

**1**(1960), 1114-1117.

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**257**(1980), 331-346 - MSC: Primary 58G15; Secondary 44A99
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552261-8
- MathSciNet review: 552261