$p$-adic gamma functions and Dwork cohomology
HTML articles powered by AMS MathViewer
- by Maurizio Boyarsky
- Trans. Amer. Math. Soc. 257 (1980), 359-369
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552263-1
- PDF | Request permission
Abstract:
The relations of Gross and Koblitz between gauss sums and the p-adic gamma function is reexamined from the point of view of Dwork’s formulation of p-adic cohomology. Some higher dimensional generalizations are proposed.References
- P. G. Lejeune Dirichlet, J. Reine Angew. Math. 15 (1836), 258-263.
- Bernard Dwork, On the zeta function of a hypersurface. II, Ann. of Math. (2) 80 (1964), 227–299. MR 188215, DOI 10.2307/1970392
- B. Dwork, $p$-adic cycles, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 27–115. MR 294346, DOI 10.1007/BF02684886
- B. Dwork, Bessel functions as $p$-adic functions of the argument, Duke Math. J. 41 (1974), 711–738. MR 387281, DOI 10.1215/S0012-7094-74-04176-3 H. Davenport and H. Hasse, Die Nullstellen der Knogruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1934), 151-182.
- Yasuo Morita, A $p$-adic analogue of the $\Gamma$-function, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), no. 2, 255–266. MR 424762 N. Sonine, Bull. Soc. Math. France 9 (1880), 162-166.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 257 (1980), 359-369
- MSC: Primary 12B40; Secondary 10Gxx, 12H25
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552263-1
- MathSciNet review: 552263