Decomposition of nonnegative group-monotone matrices
HTML articles powered by AMS MathViewer
- by S. K. Jain, Edward K. Kwak and V. K. Goel
- Trans. Amer. Math. Soc. 257 (1980), 371-385
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552264-3
- PDF | Request permission
Abstract:
A decomposition of nonnegative matrices with nonnegative group inverses has been obtained. This decomposition provides a new approach to the solution of problems relating to nonnegative matrices with nonnegative group inverses. As a consequence, a number of results are derived. Our results, among other things, answer a question of Berman, extend the theorems of Berman and Plemmons, DeMarr and Flor.References
- Adi Ben-Israel and Thomas N. E. Greville, Generalized inverses: theory and applications, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0396607
- Abraham Berman, Nonnegative matrices which are equal to their generalized inverse, Linear Algebra Appl. 9 (1974), 261–265. MR 352143, DOI 10.1016/0024-3795(74)90042-1
- Abraham Berman and Robert J. Plemmons, Matrix group monotonicity, Proc. Amer. Math. Soc. 46 (1974), 355–359. MR 352116, DOI 10.1090/S0002-9939-1974-0352116-0
- Randall E. Cline, Inverses of rank invariant powers of a matrix, SIAM J. Numer. Anal. 5 (1968), 182–197. MR 227184, DOI 10.1137/0705015
- Ralph DeMarr, Nonnegative idempotent matrices, Proc. Amer. Math. Soc. 45 (1974), 185–188. MR 354738, DOI 10.1090/S0002-9939-1974-0354738-X
- Peter Flor, On groups of non-negative matrices, Compositio Math. 21 (1969), 376–382. MR 257115
- S. K. Jain, V. K. Goel, and Edward K. Kwak, Nonnegative matrices having same nonnegative Moore-Penrose and group inverses, Linear and Multilinear Algebra 7 (1979), no. 1, 59–72. MR 523649, DOI 10.1080/03081087908817260
- R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406–413. MR 69793
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 257 (1980), 371-385
- MSC: Primary 15A09; Secondary 15A23, 15A48
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552264-3
- MathSciNet review: 552264