The free boundary for elastic-plastic torsion problems
HTML articles powered by AMS MathViewer
- by Avner Friedman and Gianni A. Pozzi
- Trans. Amer. Math. Soc. 257 (1980), 411-425
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552267-9
- PDF | Request permission
Abstract:
Consider the variational inequality: Find $u \in K$ such that $\int _Q {\nabla u \cdot \nabla (\upsilon - u) \geqslant \mu \int _Q {(\upsilon - u) (\mu > 0)} }$ for any $\upsilon \in K$, where $K = \{ w \in H_0^1(Q); \left | {\nabla w} \right | \leqslant 1\}$ and Q is a 2-dimensional simply connected domain in ${R^2}$ with piecewise ${C^3}$ boundary. The solution u represents the stress function in a torsion problem of an elastic-plastic bar with cross section Q. The sets $E = \{ x \in Q; \left | {\nabla u(x)} \right | < 1\}$, $P = \{ x \in Q; \left | {\nabla u(x)} \right | = 1\}$ are the elastic and plastic sets respectively. The purpose of this paper is to study the free boundary $\partial E \cap Q$; more specifically, an estimate is derived on the number of points of local maximum of the free boundary.References
- Haïm Brézis and David Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J. 23 (1973/74), 831–844. MR 361436, DOI 10.1512/iumj.1974.23.23069
- H. Brézis and M. Sibony, Équivalence de deux inéquations variationnelles et applications, Arch. Rational Mech. Anal. 41 (1971), 254–265 (French). MR 346345, DOI 10.1007/BF00250529
- Luis A. Caffarelli and Avner Friedman, The free boundary for elastic-plastic torsion problems, Trans. Amer. Math. Soc. 252 (1979), 65–97. MR 534111, DOI 10.1090/S0002-9947-1979-0534111-0
- Luis A. Caffarelli and Néstor M. Rivière, The smoothness of the elastic-plastic free boundary of a twisted bar, Proc. Amer. Math. Soc. 63 (1977), no. 1, 56–58. MR 521411, DOI 10.1090/S0002-9939-1977-0521411-7
- L. A. Caffarelli and N. M. Rivière, The Lipschitz character of the stress tensor, when twisting an elastic plastic bar, Arch. Rational Mech. Anal. 69 (1979), no. 1, 31–36. MR 513957, DOI 10.1007/BF00248408
- Avner Friedman and Robert Jensen, Convexity of the free boundary in the Stefan problem and in the dam problem, Arch. Rational Mech. Anal. 67 (1978), no. 1, 1–24. MR 473315, DOI 10.1007/BF00280824 R. A. Glowinski, J. L. Lions and R. Tremoliéres, Approximation numérique des solutions des inéquations en méchanique et en physique, vol. 1, Dunod, Paris, 1976.
- Tsuan Wu Ting, Elastic-plastic torsion of simply connected cylindrical bars, Indiana Univ. Math. J. 20 (1970/71), 1047–1076. MR 277161, DOI 10.1512/iumj.1971.20.20100
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 257 (1980), 411-425
- MSC: Primary 35R35; Secondary 49A29, 73C99, 73K99
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552267-9
- MathSciNet review: 552267