Continuously translating vector-valued measures
HTML articles powered by AMS MathViewer
- by U. B. Tewari and M. Dutta
- Trans. Amer. Math. Soc. 257 (1980), 507-519
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552271-0
- PDF | Request permission
Abstract:
Let G be a locally compact group and A an arbitrary Banach space. ${L^p}(G,A)$ will denote the space of p-integrable A-valued functions on G. $M(G,A)$ will denote the space of regular A-valued Borel measures of bounded variation on G. In this paper, we characterise the relatively compact subsets of ${L^p}(G,A)$. Using this result, we prove that if $\mu \in M(G,A)$, such that either $x \to {\mu _x}$ or $x{ \to _x}\mu$ is continuous, then $\mu \in {L^1}(G,A)$.References
- N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189 E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin and New York, 1963.
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- James E. Huneycutt Jr., Products and convolutions of vector valued set functions, Studia Math. 41 (1972), 119–129. MR 302855, DOI 10.4064/sm-41-2-119-129
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- J. J. Uhl Jr., The range of a vector-valued measure, Proc. Amer. Math. Soc. 23 (1969), 158–163. MR 264029, DOI 10.1090/S0002-9939-1969-0264029-1 A. Weil, L’integration dans les groupes topologiques et ses applications, Hermann, Paris, 1951.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 257 (1980), 507-519
- MSC: Primary 28B05
- DOI: https://doi.org/10.1090/S0002-9947-1980-0552271-0
- MathSciNet review: 552271