Asymptotic completeness for classes of two, three, and four particle Schrödinger operators
HTML articles powered by AMS MathViewer
- by George A. Hagedorn
- Trans. Amer. Math. Soc. 258 (1980), 1-75
- DOI: https://doi.org/10.1090/S0002-9947-1980-0554318-4
- PDF | Request permission
Abstract:
Formulas for the resolvent ${(z - H)^{ - 1}}$ are derived, where $H = {H_0} + {\Sigma _{i < j}}{\lambda _{ij}}{V_{ij}}$ is an N particle Schrödinger operator with the center of mass motion removed. For a large class of two-body potentials and generic couplings $\{ {\lambda _{ij}}\}$, these formulas are used to prove asymptotic completeness in the $N \leqslant 4$ body problem when the space dimension is $m \geqslant 3$. The allowed potentials belong to a space of dilation analytic multiplication operators which fall off more rapidly than ${r^{ - 2 - \varepsilon }}$ at $\infty$. In particular, Yukawa potentials, generalized Yukawa potentials, and potentials of the form ${(1 + r)^{ - 2 - \varepsilon }}$ are allowed.References
- Shmuel Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151–218. MR 397194
- Erik Balslev, Absence of positive eigenvalues of Schrödinger operators, Arch. Rational Mech. Anal. 59 (1975), no. 4, 343–357. MR 489507, DOI 10.1007/BF00250424
- E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions, Comm. Math. Phys. 22 (1971), 280–294. MR 345552, DOI 10.1007/BF01877511
- J. M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251–270. MR 391792, DOI 10.1007/BF01646473
- J. M. Cook, Convergence to the Møller wave-matrix, J. Math. and Phys. 36 (1957), 82–87. MR 91746, DOI 10.1002/sapm195736182
- L. D. Faddeev, Mathematical aspects of the three-body problem in the quantum scattering theory, Israel Program for Scientific Translations, Jerusalem; Daniel Davey & Co., Inc., New York, 1965. Translated from the Russian by Ch. Gutfreund; Translation edited by L. Meroz. MR 0221828
- J. Ginibre and M. Moulin, Hilbert space approach to the quantum mechanical three-body problem, Ann. Inst. H. Poincaré Sect. A (N.S.) 21 (1974), 97–145. MR 368656 U. Greifenegger, K. Jörgens, J.Weidmann and M. Winkler, Streutheorie für Schrödinger Operatoren, preprint, 1972.
- George A. Hagedorn, Asymptotic completeness for a class of four particle Schrödinger operators, Bull. Amer. Math. Soc. 84 (1978), no. 1, 155–156. MR 496030, DOI 10.1090/S0002-9904-1978-14449-8
- Klaus Hepp, On the quantum mechanical $N$-body problem, Helv. Phys. Acta 42 (1969), 425–458. MR 247840
- James S. Howland, Abstract stationary theory of multichannel scattering, J. Functional Analysis 22 (1976), no. 3, 250–282. MR 0461175, DOI 10.1016/0022-1236(76)90012-4
- Teruo Ikebe, Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory, Arch. Rational Mech. Anal. 5 (1960), 1–34 (1960). MR 128355, DOI 10.1007/BF00252896
- Rafael Jose Iorio Jr. and Michael O’Carroll, Asymptotic completeness for multi-particle Schroedinger Hamiltonians with weak potentials, Comm. Math. Phys. 27 (1972), 137–145. MR 314392, DOI 10.1007/BF01645616
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Tosio Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 (1965/66), 258–279. MR 190801, DOI 10.1007/BF01360915
- S. T. Kuroda, An abstract stationary approach to perturbation of continuous spectra and scattering theory, J. Analyse Math. 20 (1967), 57–117. MR 216331, DOI 10.1007/BF02786670
- S. T. Kuroda, Scattering theory for differential operators. II. Self-adjoint elliptic operators, J. Math. Soc. Japan 25 (1973), 222–234. MR 326436, DOI 10.2969/jmsj/02520222
- Richard B. Lavine, Commutators and scattering theory. I. Repulsive interactions, Comm. Math. Phys. 20 (1971), 301–323. MR 293945, DOI 10.1007/BF01646626
- Eric Mourre, Applications de la méthode de Lavine au problème à trois corps, Ann. Inst. H. Poincaré Sect. A (N.S.) 26 (1977), no. 3, 219–262. MR 441155 I. M. Narodetskii and O. A. Yakubovskii, Two cluster approximation in the integral equation for N particles, Soviet J. Nuclear Phys. 14 (1972), 178-184.
- A. J. O’Connor, Exponential decay of bound state wave functions, Comm. Math. Phys. 32 (1973), 319–340. MR 336119, DOI 10.1007/BF01645613
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- Michael Reed and Barry Simon, Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory. MR 529429 —, Methods of modern mathematical physics, Vol. IV: Analysis of operators, Academic Press, New York-London, 1978.
- Martin Schechter, A new criterion for scattering theory, Duke Math. J. 44 (1977), no. 4, 863–872. MR 487516
- I. M. Sigal, Mathematical foundations of quantum scattering theory for multiparticle systems, Mem. Amer. Math. Soc. 16 (1978), no. 209, iii+147. MR 508478, DOI 10.1090/memo/0209
- I. M. Sigal, On the point spectrum of the Schrödinger operators of multiparticle systems, Comm. Math. Phys. 48 (1976), no. 2, 155–164. MR 425389, DOI 10.1007/BF01608502
- I. M. Sigal, On quantum mechanics of many-body systems with dilation-analytic potentials, Bull. Amer. Math. Soc. 84 (1978), no. 1, 152–154. MR 459410, DOI 10.1090/S0002-9904-1978-14448-6
- Barry Simon, Quantum mechanics for Hamiltonians defined as quadratic forms, Princeton Series in Physics, Princeton University Press, Princeton, N. J., 1971. MR 0455975
- Barry Simon, Quadratic form techniques and the Balslev-Combes theorem, Comm. Math. Phys. 27 (1972), 1–9. MR 321456, DOI 10.1007/BF01649654
- Barry Simon, Resonances in $n$-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory, Ann. of Math. (2) 97 (1973), 247–274. MR 353896, DOI 10.2307/1970847
- Barry Simon, Absence of positive eigenvalues in a class of multiparticle quantum systems, Math. Ann. 207 (1974), 133–138. MR 329485, DOI 10.1007/BF01362152
- B. Simon, Scattering theory and quadratic forms: on a theorem of Schechter, Comm. Math. Phys. 53 (1977), no. 2, 151–153. MR 433234, DOI 10.1007/BF01609129
- Barry Simon, Geometric methods in multiparticle quantum systems, Comm. Math. Phys. 55 (1977), no. 3, 259–274. MR 496073, DOI 10.1007/BF01614550
- Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492. MR 82586, DOI 10.1090/S0002-9947-1956-0082586-0
- Lawrence E. Thomas, Asymptotic completeness in two- and three-particle quantum mechanical scattering, Ann. Physics 90 (1975), 127–165. MR 424082, DOI 10.1016/0003-4916(75)90143-8 E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford Press, London, 1950.
- Clasine van Winter, Complex dynamical variables for multiparticle systems with analytic interactions. I, J. Math. Anal. Appl. 47 (1974), 633–670. MR 368663, DOI 10.1016/0022-247X(74)90015-8
- Clasine van Winter, Complex dynamical variables for multiparticle systems with analytic interactions. II, J. Math. Anal. Appl. 48 (1974), 368–399. MR 371308, DOI 10.1016/0022-247X(74)90166-8
- Steven Weinberg, Systematic solution of multiparticle scattering problems, Phys. Rev. (2) 133 (1964), B232–B256. MR 165883 O. A. Yakubovskii, On the integral equations in the theory of N particle scattering, Soviet J. Nuclear Phys. 5 (1967), 937-942.
- Volker Enss, Asymptotic completeness for quantum mechanical potential scattering. I. Short range potentials, Comm. Math. Phys. 61 (1978), no. 3, 285–291. MR 523013, DOI 10.1007/BF01940771 C. van Winter, Projection operators associated with analytic multiparticle Hamiltonians, Notices Amer. Math. Soc. 25 (1978), A-320.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 258 (1980), 1-75
- MSC: Primary 81F10; Secondary 35P25
- DOI: https://doi.org/10.1090/S0002-9947-1980-0554318-4
- MathSciNet review: 554318