Basic sequences in non-Schwartz Fréchet spaces
Author:
Steven F. Bellenot
Journal:
Trans. Amer. Math. Soc. 258 (1980), 199-216
MSC:
Primary 46A35; Secondary 03H05
DOI:
https://doi.org/10.1090/S0002-9947-1980-0554329-9
MathSciNet review:
554329
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Obliquely normalized basic sequences are defined and used to characterize non-Schwartz-Fréchet spaces. It follows that each non-Schwartz-Fréchet space E has a non-Schwartz subspace with a basis and a quotient which is not Montel (which has a normalized basis if E is separable). Stronger results are given when more is known about E, for example, if E is a subspace of a Fréchet ${l_p}$-Köthe sequence space, then E has the Banach space ${l_p}$ as a quotient and E has a subspace isomorphic to a non-Schwartz ${l_p}$-Köthe sequence space. Examples of Fréchet-Montel spaces which are not subspaces of any Fréchet space with an unconditional basis are given. The question of the existence of conditional basic sequences in non-Schwartz-Fréchet spaces is reduced to questions about Banach spaces with symmetric bases. Nonstandard analysis is used in some of the proofs and a new nonstandard characterization of Schwartz spaces is given.
- Steven F. Bellenot, On nonstandard hulls of convex spaces, Canadian J. Math. 28 (1976), no. 1, 141–147. MR 407556, DOI https://doi.org/10.4153/CJM-1976-017-x ---, Universal superspaces and subspaces of Schwartz Fréchet spaces (unpublished). ---, Banach S-algebras and conditional basic sequences in non-Montel Fréchet spaces (to appear).
- Ed Dubinsky, Perfect Fréchet spaces, Math. Ann. 174 (1967), 186–194. MR 220036, DOI https://doi.org/10.1007/BF01360717 C. W. Henson and L. C. Moore, Jr., The theory of nonstandard topological vector spaces, Trans. Amer. Math. Soc. 172 (1972), 193-206. J. Horváth, Topological vector spaces and distributions, Vol. 1, Addison-Wesley, Reading, Mass., 1966.
- W. B. Johnson and H. P. Rosenthal, On $\omega ^{\ast } $-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77–92. MR 310598, DOI https://doi.org/10.4064/sm-43-1-77-92
- Gottfried Köthe, Topological vector spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York Inc., New York, 1969. Translated from the German by D. J. H. Garling. MR 0248498
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
- C. W. McArthur, Developments in Schauder basis theory, Bull. Amer. Math. Soc. 78 (1972), 877–908. MR 313766, DOI https://doi.org/10.1090/S0002-9904-1972-13048-9
- A. Pełczyński, Some problems on bases in Banach and Fréchet spaces, Israel J. Math. 2 (1964), 132–138. MR 173141, DOI https://doi.org/10.1007/BF02759953
- A. Pełczyński and I. Singer, On non-equivalent bases and conditional bases in Banach spaces, Studia Math. 25 (1964/65), 5–25. MR 179583, DOI https://doi.org/10.4064/sm-25-1-5-25
- Albrecht Pietsch, Nuclear locally convex spaces, Springer-Verlag, New York-Heidelberg, 1972. Translated from the second German edition by William H. Ruckle; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 66. MR 0350360
- Abraham Robinson, Algebraic function fields and non-standard arithmetic, Contributions to non-standard analysis (Sympos., Oberwolfach, 1970), North-Holland, Amsterdam, 1972, pp. 1–14. Studies in Logic and Found. Math., Vol. 69. MR 0480522
- Abraham Robinson and Elias Zakon, A set-theoretical characterization of enlargements, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969, pp. 109–122. MR 0239965
- Ivan Singer, Bases in Banach spaces. I, Springer-Verlag, New York-Berlin, 1970. Die Grundlehren der mathematischen Wissenschaften, Band 154. MR 0298399
- W. Wojtyński, On conditional bases in non-nuclear Fréchet spaces, Studia Math. 35 (1970), 77–96. MR 271695, DOI https://doi.org/10.4064/sm-35-1-77-96
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A35, 03H05
Retrieve articles in all journals with MSC: 46A35, 03H05
Additional Information
Keywords:
Obliquely normalized,
normalized,
unconditional,
conditional and symmetric basic sequences,
Fréchet,
Schwartz,
Montel,
Köthe sequence,
quotient spaces
Article copyright:
© Copyright 1980
American Mathematical Society