## Minimal excessive measures and functions

HTML articles powered by AMS MathViewer

- by E. B. Dynkin PDF
- Trans. Amer. Math. Soc.
**258**(1980), 217-244 Request permission

## Abstract:

Let*H*be a class of measures or functions. An element

*h*of

*H*is minimal if the relation $h = {h_1} + {h_2}$, ${h_1}$, ${h_2} \in H$ implies that ${h_1}$, ${h_2}$ are proportional to

*h*. We give a limit procedure for computing minimal excessive measures for an arbitrary Markov semigroup ${T_t}$ in a standard Borel space

*E*. Analogous results for excessive functions are obtained assuming that an excessive measure $\gamma$ on

*E*exists such that ${T_t}f = 0$ if $f = 0$ $\gamma$-a.e. In the Appendix, we prove that each excessive element can be decomposed into minimal elements and that such a decomposition is unique.

## References

- J. L. Doob,
*Stochastic processes*, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR**0058896** - J. L. Doob,
*Discrete potential theory and boundaries*, J. Math. Mech.**8**(1959), 433–458; erratum 993. MR**0107098**, DOI 10.1512/iumj.1959.8.58063 - E. B. Dynkin,
*The exit space of a Markov process*, Uspehi Mat. Nauk**24**(1969), no. 4 (148), 89–152 (Russian). MR**0264768** - E. B. Dynkin,
*Excessive measures and laws of entry for a Markov process*, Mat. Sb. (N.S.)**84 (126)**(1971), 218–253 (Russian). MR**0290457** - E. B. Dynkin,
*Initial and final behavior of the trajectories of Markov processes*, Uspehi Mat. Nauk**26**(1971), no. 4(160), 153–172 (Russian). MR**0298758** - E. B. Dynkin,
*Integral representation of excessive measures and excessive functions*, Uspehi Mat. Nauk**27**(1972), no. 1(163), 43–80 (Russian). MR**0405602** - E. B. Dynkin,
*Sufficient statistics and extreme points*, Ann. Probab.**6**(1978), no. 5, 705–730. MR**0518321** - E. B. Dynkin,
*On duality for Markov processes*, Stochastic analysis (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1978) Academic Press, New York-London, 1978, pp. 63–77. MR**517234** - G. A. Hunt,
*Markoff chains and Martin boundaries*, Illinois J. Math.**4**(1960), 313–340. MR**123364**
—, - Hiroshi Kunita and Takesi Watanabe,
*Markov processes and Martin boundaries. I*, Illinois J. Math.**9**(1965), 485–526. MR**181010** - S. E. Kuznecov,
*Construction of Markov processes with random birth and death times*, Teor. Verojatnost. i Primenen.**18**(1973), 596–601 (Russian, with English summary). MR**0343376** - Robert S. Martin,
*Minimal positive harmonic functions*, Trans. Amer. Math. Soc.**49**(1941), 137–172. MR**3919**, DOI 10.1090/S0002-9947-1941-0003919-6 - Jacques Neveu,
*Bases mathématiques du calcul des probabilités*, Masson et Cie, Éditeurs, Paris, 1964 (French). MR**0198504**

*Transformation of Markov processes*, Proc. Internat. Congress Math., Stockholm, 1962, pp. 531-535.

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**258**(1980), 217-244 - MSC: Primary 60J50; Secondary 28D99, 47D07
- DOI: https://doi.org/10.1090/S0002-9947-1980-0554330-5
- MathSciNet review: 554330