Minimal excessive measures and functions
HTML articles powered by AMS MathViewer
- by E. B. Dynkin
- Trans. Amer. Math. Soc. 258 (1980), 217-244
- DOI: https://doi.org/10.1090/S0002-9947-1980-0554330-5
- PDF | Request permission
Abstract:
Let H be a class of measures or functions. An element h of H is minimal if the relation $h = {h_1} + {h_2}$, ${h_1}$, ${h_2} \in H$ implies that ${h_1}$, ${h_2}$ are proportional to h. We give a limit procedure for computing minimal excessive measures for an arbitrary Markov semigroup ${T_t}$ in a standard Borel space E. Analogous results for excessive functions are obtained assuming that an excessive measure $\gamma$ on E exists such that ${T_t}f = 0$ if $f = 0$ $\gamma$-a.e. In the Appendix, we prove that each excessive element can be decomposed into minimal elements and that such a decomposition is unique.References
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- J. L. Doob, Discrete potential theory and boundaries, J. Math. Mech. 8 (1959), 433–458; erratum 993. MR 0107098, DOI 10.1512/iumj.1959.8.58063
- E. B. Dynkin, The exit space of a Markov process, Uspehi Mat. Nauk 24 (1969), no. 4 (148), 89–152 (Russian). MR 0264768
- E. B. Dynkin, Excessive measures and laws of entry for a Markov process, Mat. Sb. (N.S.) 84 (126) (1971), 218–253 (Russian). MR 0290457
- E. B. Dynkin, Initial and final behavior of the trajectories of Markov processes, Uspehi Mat. Nauk 26 (1971), no. 4(160), 153–172 (Russian). MR 0298758
- E. B. Dynkin, Integral representation of excessive measures and excessive functions, Uspehi Mat. Nauk 27 (1972), no. 1(163), 43–80 (Russian). MR 0405602
- E. B. Dynkin, Sufficient statistics and extreme points, Ann. Probab. 6 (1978), no. 5, 705–730. MR 0518321
- E. B. Dynkin, On duality for Markov processes, Stochastic analysis (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1978) Academic Press, New York-London, 1978, pp. 63–77. MR 517234
- G. A. Hunt, Markoff chains and Martin boundaries, Illinois J. Math. 4 (1960), 313–340. MR 123364 —, Transformation of Markov processes, Proc. Internat. Congress Math., Stockholm, 1962, pp. 531-535.
- Hiroshi Kunita and Takesi Watanabe, Markov processes and Martin boundaries. I, Illinois J. Math. 9 (1965), 485–526. MR 181010
- S. E. Kuznecov, Construction of Markov processes with random birth and death times, Teor. Verojatnost. i Primenen. 18 (1973), 596–601 (Russian, with English summary). MR 0343376
- Robert S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137–172. MR 3919, DOI 10.1090/S0002-9947-1941-0003919-6
- Jacques Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Éditeurs, Paris, 1964 (French). MR 0198504
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 258 (1980), 217-244
- MSC: Primary 60J50; Secondary 28D99, 47D07
- DOI: https://doi.org/10.1090/S0002-9947-1980-0554330-5
- MathSciNet review: 554330