Equivariant homotopy theory and Milnor’s theorem
HTML articles powered by AMS MathViewer
- by Stefan Waner
- Trans. Amer. Math. Soc. 258 (1980), 351-368
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558178-7
- PDF | Request permission
Abstract:
The foundations of equivariant homotopy and cellular theory are examined; an equivariant Whitehead theorem is proved, and the classical results by Milnor about spaces with the homotopy-type of a CW complex are generalized to the equivariant case. The ambient group G is assumed compact Lie. Further results include equivariant cellular approximation and the procedure for replacement of an arbitrary G-space by a G-CW complex.References
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Sören Illman, Equivariant singular homology and cohomology. I, Mem. Amer. Math. Soc. 1 (1975), no. issue 2, 156, ii+74. MR 375286, DOI 10.1090/memo/0156
- John Milnor, On spaces having the homotopy type of a $\textrm {CW}$-complex, Trans. Amer. Math. Soc. 90 (1959), 272–280. MR 100267, DOI 10.1090/S0002-9947-1959-0100267-4
- Takao Matumoto, Equivariant $K$-theory and Fredholm operators, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 109–125. MR 0290354
- Takao Matumoto, On $G$-$\textrm {CW}$ complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363–374. MR 345103
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112 J. P. May, Homotopic foundations of algebraic topology, Mimeographed notes, Univ. of Chicago (to appear). S. Waner, Equivariant classifying spaces and fibrations, Thesis, Univ. of Chicago, 1978. —, Classification of oriented spherical fibrations (in preparation).
- Arthur G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127–150. MR 250324, DOI 10.1016/0040-9383(69)90005-6
- Chung Nim Lee and Arthur G. Wasserman, On the groups $JO(G)$, Mem. Amer. Math. Soc. 2 (1975), no. issue 1, 159, ii+62. MR 370581, DOI 10.1090/memo/0159
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 258 (1980), 351-368
- MSC: Primary 55P99; Secondary 55R05, 57S15
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558178-7
- MathSciNet review: 558178