Equivariant fibrations and transfer
HTML articles powered by AMS MathViewer
- by Stefan Waner
- Trans. Amer. Math. Soc. 258 (1980), 369-384
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558179-9
- PDF | Request permission
Abstract:
The basic properties of equivariant fibrations are described, including an equivariant version of the Ďold Theorem. The foundations of equivariant stable homotopy theory are described, and the theory of equivariant transfer is developed.References
- J. C. Becker and D. G. Gottlieb, Transfer and duality, Purdue Univ. (preprint).
- Tammo tom Dieck, The Burnside ring and equivariant stable homotopy, University of Chicago, Department of Mathematics, Chicago, Ill., 1975. Lecture notes by Michael C. Bix. MR 0423389 J. P. May, Homotopic foundations of algebraic topology, University of Chicago, Chicago, Ill., (mimeographed notes).
- J. Peter May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975), no. 1, 155, xiii+98. MR 370579, DOI 10.1090/memo/0155 J. P. May, H. Hauschild and S. Waner, Equivariant infinite loop spaces (in preparation).
- John Milnor, On spaces having the homotopy type of a $\textrm {CW}$-complex, Trans. Amer. Math. Soc. 90 (1959), 272–280. MR 100267, DOI 10.1090/S0002-9947-1959-0100267-4 G. Nishida, On the equivariant J-groups and equivariant stable homotopy types of representations of finite groups, Kyoto (preprint). R. Schön, Fibrations over a CWh-base, Proc. Amer. Math. Soc. 62 (1977), 165-166.
- James Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239–246. MR 154286, DOI 10.1016/0040-9383(63)90006-5
- Stefan Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258 (1980), no. 2, 351–368. MR 558178, DOI 10.1090/S0002-9947-1980-0558178-7 —, Classification of equivariant fibrations, Trans. Amer. Math. Soc. (to appear) —, The equivariant approximation theorem, Princeton Univ. (preprint). —, Cyclic group actions and the Adams conjecture, Princeton Univ. (preprint).
- Klaus Wirthmüller, Equivariant $S$-duality, Arch. Math. (Basel) 26 (1975), no. 4, 427–431. MR 375297, DOI 10.1007/BF01229762
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 258 (1980), 369-384
- MSC: Primary 55P99; Secondary 55R05, 57S15
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558179-9
- MathSciNet review: 558179