On meromorphic solutions of algebraic differential equations
HTML articles powered by AMS MathViewer
- by Sh. Strelitz
- Trans. Amer. Math. Soc. 258 (1980), 431-440
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558182-9
- PDF | Request permission
Abstract:
The Malmquist Theorem is generalized for equations of the type $R(z, w, w’, \ldots , {w^{(n)}}) = {{P(z, w)}/{Q(z, w)}}$ where P, Q and R are polynomials of w and $w, w’, \ldots , {w^{(n)}}$ respectively with meromorphic coefficients of finite order.References
- B. Ja. Levin, Distribution of zeros of entire functions, American Mathematical Society, Providence, R.I., 1964. MR 0156975, DOI 10.1090/mmono/005
- J. Malmquist, Sur les fonctions a un nombre fini de branches définies par les équations différentielles du premier ordre, Acta Math. 36 (1913), no. 1, 297–343 (French). MR 1555091, DOI 10.1007/BF02422385
- Sh. I. Strelits and Š. I. Strelic, Asimptoticheskie svoĭstva analiticheskikh resheniĭ differentsial′nykh uravneniĭ, Izdat. “Mintis”, Vilnius, 1972 (Russian). Lithuanian and English summaries. MR 0499384
- Sh. Strelitz, A remark on meromorphic solutions of differential equations, Proc. Amer. Math. Soc. 65 (1977), no. 2, 255–261. MR 486726, DOI 10.1090/S0002-9939-1977-0486726-X
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 258 (1980), 431-440
- MSC: Primary 34A20; Secondary 30D30
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558182-9
- MathSciNet review: 558182