Cyclic extensions of parafree groups
HTML articles powered by AMS MathViewer
- by Peng Choon Wong
- Trans. Amer. Math. Soc. 258 (1980), 441-456
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558183-0
- PDF | Request permission
Abstract:
Let $1 \to F \to G \to T \to 1$ be a short exact sequence where F is parafree and T is infinite cyclic. We examine some properties of G when $F/F’$ is a free ZT-module. Here $F’$ is the commutator subgroup of F and ZT is the integral group ring of T. In particular, we show G is parafree and ${\gamma _n}F/{\gamma _{n + 1}}F$ is a free ZT-module for every $n \geqslant 1$ (where ${\gamma _n}F$ is the nth term of the lower central series of F).References
- Benjamin Baumslag, Intersections of finitely generated subgroups in free products, J. London Math. Soc. 41 (1966), 673–679. MR 199247, DOI 10.1112/jlms/s1-41.1.673
- Benjamin Baumslag, Generalized free products whose two-generator subgroups are free, J. London Math. Soc. 43 (1968), 601–606. MR 233896, DOI 10.1112/jlms/s1-43.1.601
- Gilbert Baumslag, On generalised free products, Math. Z. 78 (1962), 423–438. MR 140562, DOI 10.1007/BF01195185
- Gilbert Baumslag, Groups with the same lower central sequence as a relatively free group. I. The groups, Trans. Amer. Math. Soc. 129 (1967), 308–321. MR 217157, DOI 10.1090/S0002-9947-1967-0217157-3
- Gilbert Baumslag, Some groups that are just about free, Bull. Amer. Math. Soc. 73 (1967), 621–622. MR 212079, DOI 10.1090/S0002-9904-1967-11800-7
- Gilbert Baumslag, More groups that are just about free, Bull. Amer. Math. Soc. 74 (1968), 752–754. MR 225858, DOI 10.1090/S0002-9904-1968-12029-4
- Gilbert Baumslag, Groups with the same lower central sequence as a relatively free group. II. Properties, Trans. Amer. Math. Soc. 142 (1969), 507–538. MR 245653, DOI 10.1090/S0002-9947-1969-0245653-3
- Gilbert Baumslag, Lecture notes on nilpotent groups, Regional Conference Series in Mathematics, No. 2, American Mathematical Society, Providence, R.I., 1971. MR 0283082
- Gilbert Baumslag, Finitely generated cyclic extensions of free groups are residually finite, Bull. Austral. Math. Soc. 5 (1971), 87–94. MR 311776, DOI 10.1017/S0004972700046906
- Gilbert Baumslag, A non-cyclic, locally free, free-by-cyclic group all of whose finite factor groups are cyclic, Bull. Austral. Math. Soc. 6 (1972), 313–314. MR 316570, DOI 10.1017/S000497270004452X
- Gilbert Baumslag, A finitely presented metabelian group with a free abelian derived group of infinite rank, Proc. Amer. Math. Soc. 35 (1972), 61–62. MR 299662, DOI 10.1090/S0002-9939-1972-0299662-4 —, Some problems on one-relator group, Proc. Second Internat. Conference on Theory of Groups, Lecture Notes in Math., vol. 372, Springer-Verlag, Berlin and New York, 1973, pp. 75-81.
- Gilbert Baumslag and Urs Stammbach, A non-free parafree group all of whose countable subgroups are free, Math. Z. 148 (1976), no. 1, 63–65. MR 409658, DOI 10.1007/BF01187870
- R. G. Burns, On the finitely generated subgroups of an amalgamated product of two groups, Trans. Amer. Math. Soc. 169 (1972), 293–306. MR 372043, DOI 10.1090/S0002-9947-1972-0372043-5
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- Philip Hall, The Edmonton notes on nilpotent groups, Queen Mary College Mathematics Notes, Queen Mary College, Mathematics Department, London, 1969. MR 0283083
- Nathan Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, 190 Hope Street, Providence, R.I., 1956. MR 0081264
- Abraham Karrass and Donald Solitar, On groups with one defining relation having an abelian normal subgroup, Proc. Amer. Math. Soc. 23 (1969), 5–10. MR 245656, DOI 10.1090/S0002-9939-1969-0245656-4
- Abraham Karrass and Donald Solitar, On finitely generated subgroups of a free product, Math. Z. 108 (1969), 285–287. MR 245654, DOI 10.1007/BF01112534
- A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227–255. MR 260879, DOI 10.1090/S0002-9947-1970-0260879-9 W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966. O. Schreier, Die Untergruppen der freien Gruppen, Abh. Math. Sem. Univ. Hamburg 5 (1928), 161-183. P. C. Wong, On cyclic extensions of parafree groups, Ph. D. thesis, New York University, 1978.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 258 (1980), 441-456
- MSC: Primary 20F12
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558183-0
- MathSciNet review: 558183