## Cyclic extensions of parafree groups

HTML articles powered by AMS MathViewer

- by Peng Choon Wong PDF
- Trans. Amer. Math. Soc.
**258**(1980), 441-456 Request permission

## Abstract:

Let $1 \to F \to G \to T \to 1$ be a short exact sequence where*F*is parafree and

*T*is infinite cyclic. We examine some properties of

*G*when $F/F’$ is a free

*ZT*-module. Here $F’$ is the commutator subgroup of

*F*and

*ZT*is the integral group ring of

*T*. In particular, we show

*G*is parafree and ${\gamma _n}F/{\gamma _{n + 1}}F$ is a free

*ZT*-module for every $n \geqslant 1$ (where ${\gamma _n}F$ is the

*n*th term of the lower central series of

*F*).

## References

- Benjamin Baumslag,
*Intersections of finitely generated subgroups in free products*, J. London Math. Soc.**41**(1966), 673–679. MR**199247**, DOI 10.1112/jlms/s1-41.1.673 - Benjamin Baumslag,
*Generalized free products whose two-generator subgroups are free*, J. London Math. Soc.**43**(1968), 601–606. MR**233896**, DOI 10.1112/jlms/s1-43.1.601 - Gilbert Baumslag,
*On generalised free products*, Math. Z.**78**(1962), 423–438. MR**140562**, DOI 10.1007/BF01195185 - Gilbert Baumslag,
*Groups with the same lower central sequence as a relatively free group. I. The groups*, Trans. Amer. Math. Soc.**129**(1967), 308–321. MR**217157**, DOI 10.1090/S0002-9947-1967-0217157-3 - Gilbert Baumslag,
*Some groups that are just about free*, Bull. Amer. Math. Soc.**73**(1967), 621–622. MR**212079**, DOI 10.1090/S0002-9904-1967-11800-7 - Gilbert Baumslag,
*More groups that are just about free*, Bull. Amer. Math. Soc.**74**(1968), 752–754. MR**225858**, DOI 10.1090/S0002-9904-1968-12029-4 - Gilbert Baumslag,
*Groups with the same lower central sequence as a relatively free group. II. Properties*, Trans. Amer. Math. Soc.**142**(1969), 507–538. MR**245653**, DOI 10.1090/S0002-9947-1969-0245653-3 - Gilbert Baumslag,
*Lecture notes on nilpotent groups*, Regional Conference Series in Mathematics, No. 2, American Mathematical Society, Providence, R.I., 1971. MR**0283082** - Gilbert Baumslag,
*Finitely generated cyclic extensions of free groups are residually finite*, Bull. Austral. Math. Soc.**5**(1971), 87–94. MR**311776**, DOI 10.1017/S0004972700046906 - Gilbert Baumslag,
*A non-cyclic, locally free, free-by-cyclic group all of whose finite factor groups are cyclic*, Bull. Austral. Math. Soc.**6**(1972), 313–314. MR**316570**, DOI 10.1017/S000497270004452X - Gilbert Baumslag,
*A finitely presented metabelian group with a free abelian derived group of infinite rank*, Proc. Amer. Math. Soc.**35**(1972), 61–62. MR**299662**, DOI 10.1090/S0002-9939-1972-0299662-4
—, - Gilbert Baumslag and Urs Stammbach,
*A non-free parafree group all of whose countable subgroups are free*, Math. Z.**148**(1976), no. 1, 63–65. MR**409658**, DOI 10.1007/BF01187870 - R. G. Burns,
*On the finitely generated subgroups of an amalgamated product of two groups*, Trans. Amer. Math. Soc.**169**(1972), 293–306. MR**372043**, DOI 10.1090/S0002-9947-1972-0372043-5 - Marshall Hall Jr.,
*The theory of groups*, The Macmillan Company, New York, N.Y., 1959. MR**0103215** - Philip Hall,
*The Edmonton notes on nilpotent groups*, Queen Mary College Mathematics Notes, Queen Mary College, Mathematics Department, London, 1969. MR**0283083** - Nathan Jacobson,
*Structure of rings*, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, 190 Hope Street, Providence, R.I., 1956. MR**0081264** - Abraham Karrass and Donald Solitar,
*On groups with one defining relation having an abelian normal subgroup*, Proc. Amer. Math. Soc.**23**(1969), 5–10. MR**245656**, DOI 10.1090/S0002-9939-1969-0245656-4 - Abraham Karrass and Donald Solitar,
*On finitely generated subgroups of a free product*, Math. Z.**108**(1969), 285–287. MR**245654**, DOI 10.1007/BF01112534 - A. Karrass and D. Solitar,
*The subgroups of a free product of two groups with an amalgamated subgroup*, Trans. Amer. Math. Soc.**150**(1970), 227–255. MR**260879**, DOI 10.1090/S0002-9947-1970-0260879-9
W. Magnus, A. Karrass and D. Solitar,

*Some problems on one-relator group*, Proc. Second Internat. Conference on Theory of Groups, Lecture Notes in Math., vol. 372, Springer-Verlag, Berlin and New York, 1973, pp. 75-81.

*Combinatorial group theory*, Interscience, New York, 1966. O. Schreier,

*Die Untergruppen der freien Gruppen*, Abh. Math. Sem. Univ. Hamburg

**5**(1928), 161-183. P. C. Wong,

*On cyclic extensions of parafree groups*, Ph. D. thesis, New York University, 1978.

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**258**(1980), 441-456 - MSC: Primary 20F12
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558183-0
- MathSciNet review: 558183