The Witt ring of a space of orderings
HTML articles powered by AMS MathViewer
- by Murray Marshall
- Trans. Amer. Math. Soc. 258 (1980), 505-521
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558187-8
- PDF | Request permission
Abstract:
The theory of “space of orderings” generalizes the reduced theory of quadratic forms over fields (or, more generally, over semilocal rings). The category of spaces of orderings is equivalent to a certain category of “abstract Witt rings". In the particular case of the space of orderings of a formally real field K, the corresponding abstract Witt ring is just the reduced Witt ring of K. In this paper it is proved that if $X = (X, G)$ is any space of orderings with Witt ring W(X), and $X \to Z$ is any continuous function, then g is represented by an element of W(X) if and only if ${\Sigma _{\sigma \in V}}g(\sigma ) \equiv 0 \bmod \left | V \right |$ holds for all finite fans $V \subseteq X$. This generalizes a recent field theoretic result of Becker and Bröcker. Following the proof of this, applications are given to the computation of the stability index of X, and to the representation of continuous functions $g: X \to \pm 1$ by elements of G.References
- Eberhard Becker and Ludwig Bröcker, On the description of the reduced Witt ring, J. Algebra 52 (1978), no. 2, 328–346. MR 506029, DOI 10.1016/0021-8693(78)90243-0
- Ludwig Bröcker, Zur Theorie der quadratischen Formen über formal reellen Körpern, Math. Ann. 210 (1974), 233–256 (German). MR 354549, DOI 10.1007/BF01350587
- Ludwig Bröcker, Characterization of fans and hereditarily Pythagorean fields, Math. Z. 151 (1976), no. 2, 149–163. MR 422233, DOI 10.1007/BF01213992
- Thomas C. Craven, Stability in Witt rings, Trans. Amer. Math. Soc. 225 (1977), 227–242. MR 424800, DOI 10.1090/S0002-9947-1977-0424800-9
- Richard Elman and T. Y. Lam, Quadratic forms over formally real fields and pythagorean fields, Amer. J. Math. 94 (1972), 1155–1194. MR 314878, DOI 10.2307/2373568
- Jerrold L. Kleinstein and Alex Rosenberg, Succinct and representational Witt rings, Pacific J. Math. 86 (1980), no. 1, 99–137. MR 586872, DOI 10.2140/pjm.1980.86.99
- Manfred Knebusch, Alex Rosenberg, and Roger Ware, Signatures on semilocal rings, J. Algebra 26 (1973), 208–250. MR 327761, DOI 10.1016/0021-8693(73)90021-5
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410 M. Marshall, A reduced theory of quadratic forms (unpublished).
- Murray Marshall, Classification of finite spaces of orderings, Canadian J. Math. 31 (1979), no. 2, 320–330. MR 528811, DOI 10.4153/CJM-1979-035-4
- Murray A. Marshall, Quotients and inverse limits of spaces of orderings, Canadian J. Math. 31 (1979), no. 3, 604–616. MR 536366, DOI 10.4153/CJM-1979-061-4
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Winfried Scharlau, Quadratic forms, Queen’s Papers in Pure and Applied Mathematics, No. 22, Queen’s University, Kingston, Ont., 1969. MR 0269679
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 258 (1980), 505-521
- MSC: Primary 10C05; Secondary 12D15
- DOI: https://doi.org/10.1090/S0002-9947-1980-0558187-8
- MathSciNet review: 558187