The fixed point property and unbounded sets in Hilbert space
Author:
William O. Ray
Journal:
Trans. Amer. Math. Soc. 258 (1980), 531-537
MSC:
Primary 47H09; Secondary 47H10
DOI:
https://doi.org/10.1090/S0002-9947-1980-0558189-1
MathSciNet review:
558189
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: It is shown that a closed convex subset K of a real Hilbert space H has the fixed point property for nonexpansive mappings if and only if K is bounded.
- Felix E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR 187120, DOI https://doi.org/10.1073/pnas.54.4.1041
- K. Goebel and T. Kuczumow, A contribution to the theory of nonexpansive mappings, Bull. Calcutta Math. Soc. 70 (1978), no. 6, 355–357. MR 584472
- Dietrich Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258 (German). MR 190718, DOI https://doi.org/10.1002/mana.19650300312
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI https://doi.org/10.2307/2313345
- William O. Ray, Nonexpansive mappings on unbounded convex domains, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 3, 241–245 (English, with Russian summary). MR 493551
Retrieve articles in Transactions of the American Mathematical Society with MSC: 47H09, 47H10
Retrieve articles in all journals with MSC: 47H09, 47H10
Additional Information
Keywords:
Fixed points,
nonexpansive operators
Article copyright:
© Copyright 1980
American Mathematical Society