THE GROUP OF RATIONAL SOLUTIONS OF
\[y^2 = x(x - 1)(x - t^2 - c) \]
BY
CHARLES F. SCHWARTZ

ABSTRACT. In this paper, we show that the Mordell-Weil group of the Weierstrass equation \(y^2 = x(x - 1)(x - t^2 - c) \), \(c \neq 0, 1 \) (i.e., the group of solutions \((x, y)\), with \(x, y \in \mathbb{C}(t)\)) is generated by its elements of order 2, together with one element of infinite order, which is exhibited.

1. Introduction. The object of this paper is to compute the Mordell-Weil group of the elliptic curve (over \(\mathbb{C}(t) \)) given by
\[y^2 = x(x - 1)(x - t^2 - c), \quad (1.1) \]
that is, the group of solutions \((x, y)\), with \(x, y \in \mathbb{C}(t)\). The Mordell-Weil theorem tells us, if the discriminant is not constant, that the Mordell-Weil group of a Weierstrass equation over a function field, is finitely generated. In this case, we prove the following:

THEOREM 1.1. The Mordell-Weil group of
\[y^2 = x(x - 1)(x - t^2 - c) \]
is generated by two elements of order 2,
\[P_1 = (0, 0) \quad \text{and} \quad P_2 = (1, 0), \]
with an element of infinite order (given in §2),
\[P_0 = (x_0, y_0). \]

The theorem is proved as follows. In §2, the solution \(P_0\) is presented. In §3, we use a function \(\mu\), defined by Manin [10], to show that \(P_0\) has infinite order. In §4, we show that the Mordell-Weil group has rank 1. In §7, we define a bilinear form, \(I(P, Q)\), on the group of \(\mathbb{C}(t)\)-rational solutions of (1.1), and show that \(4I(P, Q)\) is an integer for all \(P\) and \(Q\). We calculate that \(I(P_0, P_0) = \frac{1}{4}\) in §8, which shows that \(P_0\) is not a multiple of any other solution, so that it generates the free part of the group. Finally, in §9, it is shown by an argument of Hoyt [2] that the torsion subgroup consists of the four elements
\[\{(0, 0), (1, 0), (t^2 + c, 0), \infty\} \]
and that the three finite elements are of order 2. This will conclude the proof.
Throughout this paper, the point at ∞ is used as the identity element of the group.

2. A $C(t)$-rational solution.

Proposition 2.1. There is a $C(t)$-rational solution

$$P_0 = (x_0, y_0),$$

$$x_0 = mt + b,$$

$$y_0 = im(x_0 - t^2 - c),$$

of the Weierstrass equation

$$y^2 = x(x - 1)(x - t^2 - c),$$

where

$$b = c + \sqrt{c^2 - c}, \quad \text{and} \quad m = \sqrt{1 - 2b}.$$

Proof. This solution was found by substituting $mt + b$ for x, and then finding m and b so that

$$(mt + b)(mt + b - 1) = -m^2(mt + b - t^2 - c).$$

This solution was suggested by G. Shimura to W. Hoyt, who communicated it to me.

Throughout what follows, let c be a constant different from 0 and 1.

In solving for m and b, we found the following useful relations

$$m^2 = 1 - 2b,$$ \hspace{1cm} \text{(2.1)}

and

$$c^2 - c = (c - b)^2.$$ \hspace{1cm} \text{(2.2)}

Furthermore, one can show, using these relations:

Lemma 2.2. If λ denotes the quantity $t^2 + c$ we get the relation

$$-(x_0 - \lambda)(x_0 - 2b + \lambda) = \lambda(\lambda - 1).$$

3. The Gauss-Manin operator applied to an elliptic integral. The following is well known (cf. [10], [8]) and can be checked by a routine calculation:

Proposition 3.1. Let y be defined implicitly as a function of the two independent variables x and λ by the Legendre equation $y^2 = x(x - 1)(x - \lambda)$, and let $\partial\partial$ be the different operator

$$\partial\partial = 4\lambda(\lambda - 1) \frac{\partial^2}{\partial\lambda^2} + 4(2\lambda - 1) \frac{\partial}{\partial\lambda} + 1.$$

Then

$$\partial\partial(y^{-1}) = \frac{\partial}{\partial x} \left(-\frac{2y}{(x - y)^2} \right).$$

For a fixed $\lambda_0 \in \mathbb{C} - (0, 1)$, let γ_1 and γ_2 be loops about 0 and 1 and about 1 and λ, respectively. Then there are holomorphic functions $\omega_1(\lambda)$ and $\omega_2(\lambda)$ defined
RATIONAL SOLUTIONS OF $y^2 = x(x - 1)(x - t^2 - c)$

near λ_0 by

$$\omega_i(\lambda) = \int_{\gamma_i} (x(x - 1)(x - \lambda))^{-1/2} \, dx,$$

where the integrand is obtained from a fixed determination of the square root along the path γ_i.

Corollary 3.2. $\mathcal{E}(\omega_i) = 0$.

Proof. Observe that the determination of the square root is the same at the end of a tour around a loop γ_i as at the start, since exactly two of the zeros of $x(x - 1)(x - \lambda)$ lie inside γ_i. The result follows. Q.E.D.

Let G_K denote the group of solutions of $y^2 = x(x - 1)(x - \lambda)$ in some finite algebraic extension K of $\mathbb{C}(\lambda)$. Let G denote $G_{\mathbb{C}(\sqrt{\lambda - c})}$.

Let $P = (x, y) \in G_K$. Following Manin [10], we define a group homomorphism μ, from G_K to K, by

$$\mu(P) = \mathcal{E} \int_{\mathbb{P}} (x(x - 1)(x - \lambda))^{-1/2} \, dx.$$

Proposition 3.3. If $P_0 = (x_0, y_0)$ is the solution presented in §2, then $\mu(P_0) = i(b - c)t^{-3}$.

The proof of this is a calculation, making use of Proposition 3.1, Lemma 2.2, and equations (2.1) and (2.2).

Clearly, the map μ annihilates torsion. Thus we get

Corollary 3.4. P_0 has infinite order. Hence G has rank at least one.

4. The rank of the Mordell-Weil group. In this section, we use a formula of Shioda to show that the rank r of G is at most 1. Since we have seen that $r > 1$, this will prove that $r = 1$.

Observe that the substitutions

$$x = X + (1 + \lambda)/3, \quad y = Y/2$$

transform the Legendre equation $y^2 = x(x - 1)(x - \lambda)$ into an equation of the form

$$Y^2 = 4X^3 - G_2X - G_3,$$

with

$$G_2 = (4/3)(\lambda^2 - \lambda + 1),$$
$$G_3 = (-4/27)(\lambda + 1)(\lambda - 2)(1 - 2\lambda),$$
$$\Delta = G_2^3 - 27G_3^2 = 2^4\lambda^2(\lambda - 1)^2,$$

and

$$J = 12^3 G_2^2/\Delta = 2^6(\lambda^2 - \lambda + 1)^3/(\lambda^2(\lambda - 1)^2).$$
Let \overline{X} be the t-sphere, and let $X = \overline{X} - \{-\sqrt{-c}, -\sqrt{-c}, \sqrt{1-c}, -\sqrt{1-c}, \infty\}$. Let $\overline{V} \to \overline{X}$ be the Neron model of
\[y^2 = x(x - 1)(x - t^2 - c) \]
relative to $C(t)$. Recall from Neron [11] that \overline{V} is the minimal desingularization of the subvariety B of $X \times P^2$ defined by (1.1), relative to projection on \overline{X}.

Observe that \overline{V} has singular fibers over $\overline{X} - \overline{X}$ only, since the singular fibers occur only above the zeros and poles of $\Delta = 2^4(t^2 + c)^2(t^2 + c - 1)^2$.

Proposition 4.1 (Shioda's formula). Let $W \to Y$ be the Neron model of an elliptic surface. Let g be the genus of the base Y, v the number of singular fibers of the Neron model, v_1 the number of singular fibers of Kodaira type I_b with $b > 1$, and p_g the geometric genus of W. Let r be the rank of the group of rational sections of the elliptic surface over Y. Then $r < 4g - 4 + 2v - v_1 - 2p_g$.

Proof. This formula is taken from Shioda [13, p. 30, Corollary 2.7]. Q.E.D.

Since the $C(t)$-rational solution P of (1.1) can be viewed as a section of $B \to \overline{X}$, and the r in the formula is the rank of the group G,

Theorem 4.2. The rank of G is 1.

Proof. One can read the structure types of the singular fibers of the Neron model from Neron [11, pp. 123–125], if one knows the order of each of the functions G_3, Δ, and J at each of the points of $\overline{X} - X$. Kodaira [9, pp. 563–565] gives the Kodaira type of each of these fibers.

The result follows from counting fibers, and from the fact that $g = 0$, $p_g > 0$, and $r > 1$. Q.E.D.

5. Functions associated to rational solutions. Much of what occurs in this section is a specialization of results of Hoyt ([2]–[5]).

Let Γ_0 denote the subgroup of $SL(2, \mathbb{Z})$ generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$. Note that $-(\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}) \not\in \Gamma_0$, and that Γ_0 is a subgroup of index 2 in the principal congruence subgroup
\[\Gamma_2 = \Gamma_0 \cdot \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
of level 2.

We would now like to consider λ as modular function for Γ_0.

Proposition 5.1. There are holomorphic modular forms e_1, e_2, e_3 of weight 2, and λ and s of weight 0 and 1, respectively, for Γ_0; these can be defined in terms of the Weierstrass \wp-function by
\[
\begin{align*}
e_1(\tau) &= \wp(\tau/2, \tau, 1), \\
e_2(\tau) &= \wp(1/2, \tau, 1), \\
e_3(\tau) &= \wp((\tau + 1)/2, \tau, 1), \\
\lambda(\tau) &= (e_3 - e_1)/(e_2 - e_1),
\end{align*}
\]
and

\[s(\tau) = (e_2 - e_1)^{1/2}. \]

The first four functions are well known: see Ahlfors [1]. Hoyt [3] shows that \(s(\tau) \) is a modular form for \(\Gamma_0 \).

As in [3], \(\lambda: H \to \mathbb{C} \setminus \{0, 1\} \) and \(\Gamma_0 \) may be identified with the universal cover and fundamental group of \(\mathbb{C} \setminus \{0, 1\} \) with an element \((c, d)\) of \(\Gamma_0 \) acting on \(H \) by \(\tau \mapsto (\alpha \tau + b)/(\gamma \tau + d) \).

Let \(g_2(\tau) \) and \(g_3(\tau) \) be the usual modular forms of weight 4 and 6, respectively, and let \(G_2 \) and \(G_3 \) be as in §4. Then

Proposition 5.2. \(G_2 = g_2(\tau)s(\tau)^{-4} \) and \(G_3 = g_3(\tau)s(\tau)^{-6} \).

This follows from the definitions of \(G_2 \), \(G_3 \), and \(s \), and from the fact that the \(e_i \) are the roots of the polynomial \(4z^3 - g_2(\tau)z - g_3(\tau) \).

It is well known that every finite algebraic extension \(K \) of \(\mathbb{C}(\lambda) \) corresponds to a nonconstant holomorphic map \(\varphi: X \to \mathbb{P}^1 \) from the compact Riemann surface \(\overline{X} \) for \(K \) onto the Riemann surface \(\mathbb{P}^1 \) for \(\mathbb{C}(\lambda) \). Let \(\psi: U \to X \) be the universal cover of \(X = \varphi^{-1}(\mathbb{P}^1 \setminus \{0, 1, \infty\}) \), and let \(\pi_1(X) \) be the fundamental group of \(X \). Then it follows from basic properties of covering spaces that there are a holomorphic map \(\omega: U \to H \), and a homomorphism \(M: \pi_1(X) \to \Gamma_0 \) such that \(\lambda \circ \omega = \varphi \circ \psi \), and \(\omega \circ \sigma = M(\sigma) \circ \omega \), for \(\sigma \in \pi_1(X) \). (In the present case, the map \(\varphi \) is given by \(\varphi(t) = t^2 + c \), and \(X = \mathbb{C} \setminus \{ \pm \sqrt{-c}, \pm \sqrt{1 - c} \} \).)

Let \(V \) be the subvariety of \(\mathbb{A} \times \mathbb{P}^2 \) defined by (1.1). Then

Proposition 5.3. The universal cover of \(V \) can be identified with the map \(\Phi: U \times \mathbb{C} \to X \times \mathbb{P}^2 \) defined by

\[\Phi(u, z) = (\psi(u), (0, 0, 1)) \quad \text{if} \quad z \in \mathbb{Z}\omega(u) + \mathbb{Z} \]

and

\[\Phi(u, z) = \left(\psi(u), \left(1, \frac{\varphi(z, \omega(u), 1)}{s(\omega(u))^2} + \frac{\lambda(\omega(u)) + 1}{3}, \frac{\varphi'(z, \omega(u), 1)}{2s(\omega(u))^3} \right) \right) \]

otherwise,

and the fundamental group of \(V \) can be identified with a semidirect product of \(\pi_1(X) \) and \(\mathbb{Z} \times \mathbb{Z} \), acting on \(U \times \mathbb{C} \) by the map

\[g(\sigma, m, n)(u, z) = (\sigma(u), (c\omega(u) + d)^{-1}(z + m\omega(u) + n)) \]

for \(\sigma \in \pi_1(X) \) with \(M(\sigma) = \left(\begin{smallmatrix} c & d \\ -d & c \end{smallmatrix} \right) \), \((m, n) \in \mathbb{Z} \times \mathbb{Z} \), \(u \in U \), and \(z \in \mathbb{C} \).

Proof. See Hoyt [4].

Proposition 5.4. For each \(u \in U \), the holomorphic differential \(dx/y \) on the fiber of \(V \to X \) above \(\psi(u) \) pulls back via \(\Phi \) to the differential \(dx/y = 2s(\omega(u)) \, dz \) on \(\{u\} \times \mathbb{C} \). Also, the line segments \(\{u\} \times [0, \omega(u)] \) and \(\{u\} \times [0, 1] \) on \(\{u\} \times \mathbb{C} \) map via \(\Phi \) to closed loops \(C_1(u) \) and \(C_2(u) \), which generate the homology of the fiber of
$V \to X$ above $\psi(u)$. Consequently, the periods of dx/y on those loops are

$$\int_{C_1(u)} y^{-1} \, dx = 2s(\omega(u)) \omega(u)$$

and

$$\int_{C_2(u)} y^{-1} \, dx = 2s(\omega(u)).$$

This follows from the definition of the map Φ.

Each $\mathbb{C}(t)$-rational solution P may be viewed as a holomorphic section (also denoted P) of $B \to \overline{X}$. Then it follows, by analytic continuation, that P determines (uniquely, up to choice of base point) a holomorphic function F_P such that the following maps commute:

$$\begin{array}{ccc}
U \times \mathbb{C} & \xrightarrow{\Phi} & V \subset B \\
\downarrow \psi & & \downarrow \Phi \\
U & \xrightarrow{} & X \subset \overline{X}
\end{array}$$

Proposition 5.5. (i) $F_P(u) = (2s(\omega(u)))^{-1} \int_{\omega(u)}^{\omega(u)+1} y^{-1} \, dx$, where the path of integration is the image under Φ of the line segment $\{u\} \times [0, F_P(u)]$ in $\{u\} \times \mathbb{C}$.

(ii) F_P transforms as follows: if $\sigma \in \pi_1(X)$, and $M(\sigma) = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right)$, then,

$$F_P \circ \sigma = (c \omega(u) + d)^{-1} [F_P + q(F_P, \sigma) \omega(u) + r(F_P, \sigma)],$$

where $q(F_P, \sigma)$ and $r(F_P, \sigma)$ are integers, called the periods of F_P at σ.

(iii) The function F_P may be regarded as an Eichler integral, with integer periods, of a meromorphic function $f_P = d^2 F_P / d\omega(u)^2$; that is,

$$F_P(u) = \int_{u_1}^{u} f_P(\xi)(\omega(u) - \omega(\xi)) \, d\omega(\xi) + c_1 \omega(u) + c_2,$$

where c_1 and c_2 are constants of integration.

Proof. (i) follows from the definition of the universal cover Φ:

$$\int_{\omega(u)}^{\omega(u)+1} y^{-1} \, dx = \int_{(u,0)}^{(u,F_P(u))} 2s(\omega(u)) \, dz = 2s(\omega(u)) F_P(u).$$

(ii) follows from the fact that $(u, F_P(u))$, and $(\sigma(u), F_P(\sigma(u)))$ must map via Φ to the same point.

(iii) is proved by a calculation to show that

$$\frac{d^2}{d\omega(u)^2} \int_{u_1}^{u} f_P(\xi)(\omega(u) - \omega(\xi)) \, d\omega(\xi) = f_P(u).$$

We remark that the function f_P may be regarded as a cusp form of the second kind, of weight 3, relative to a process of base extension determined by the field extension $K|\mathbb{C}(\lambda)$, as in Hoyt [5].
6. The image of the monodromy map. We now calculate the image of the monodromy map $M: \pi_1(X) \to \Gamma_0$. This is done by calculating explicitly the image of a set of generators of $\pi_1(X)$.

As before, Γ_0 can be identified with $\pi_1(C - \{0, 1\}) = \pi_1(\mathbb{P}^1 - \{0, 1, \infty\})$. More explicitly,

Lemma 6.1. One may identify $(\frac{1}{2}, \frac{1}{2})$, $(-\frac{1}{2}, 0)$, and $(\frac{1}{2}, -\frac{3}{2}) \in \Gamma_0$ with the homotopy classes of suitably oriented closed curves C_0, C_1, and C_∞, with base point $\lambda_0 \neq c$, passing around 0, 1, and ∞ respectively.

Proof. See Hoyt [3]. Q.E.D.

The following continuous maps

\[
\mathbb{P}^1 - \{\pm \sqrt{-c} , \pm \sqrt{1 - c} , \infty, 0\} \xrightarrow{\lambda \to \lambda^2 + c} \mathbb{P}^1 - \{\pm, \sqrt{-c} , \pm \sqrt{1 - c} , \infty\} \xrightarrow{\lambda \to \lambda^2 - c} \mathbb{P}^1 - \{0, 1, \infty\}
\]

induce homomorphisms of the fundamental groups

\[
\pi_1(\mathbb{P}^1 - \{\pm \sqrt{-c} , \pm \sqrt{1 - c} , \infty, 0\}) \xrightarrow{M'} \pi_1(\mathbb{P}^1 - \{0, 1, \infty, c\})
\]

\[
\pi_1(\mathbb{P}^1 - \{\pm \sqrt{-c} , \pm \sqrt{1 - c} , \infty\}) \xrightarrow{M} \pi_1(\mathbb{P}^1 - \{0, 1, \infty\}) = \Gamma_0.
\]

We may assume that C_0, C_1, and C_∞ do not go around c. Let C_c be a path around c, as in Figure 1. Then the homotopy classes $[C_0]$, $[C_1]$, $[C_\infty]$, and $[C_c]$ generate the fundamental group $\pi_1(\mathbb{P}^1 - \{0, 1, \infty, c\})$; also,
Since \(t \mapsto t^2 + c \) is a two-sheeted cover, each of the paths \(C_0, C_1, C_\infty, \) and \(C_c \) lifts to two paths in \(\mathbb{P}^1 - \{ \pm \sqrt{-c}, \pm \sqrt{1 - c}, \infty, 0 \} \); let \(C_0^+, C_0^-, C_1^+, C_1^-, C_\infty^+, C_\infty^-, C_c^+, \) and \(C_c^- \) denote the liftings with base point \(\sqrt{\lambda_0} - c \) and let \(C_0^-, C_1^-, C_\infty^-, \) and \(C_c^- \) denote the liftings with base point \(-\sqrt{\lambda_0} - c \), as in Figure 2. Notice that \(C_0^+, C_0^-, C_1^+, \) and \(C_1^- \) are closed paths, while \(C_\infty^+, C_\infty^-, C_c^+ \) and \(C_c^- \) are not.

\[i_\ast[C_0] = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad i_\ast[C_1] = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}, \]
\[i_\ast[C_\infty] = \begin{pmatrix} 1 & -2 \\ 2 & -3 \end{pmatrix}, \quad i_\ast[C_c] = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \]

Let
\[D_0 = C_c^+ C_c^-, \quad D_{\sqrt{-c}} = C_0^+ , \quad D_{\sqrt{1-c}} = C_1^+, \]
\[D_{-\sqrt{c}} = C_\infty^+ C_0^- (C_\infty^+)^{-1} , \quad D_{-\sqrt{1-c}} = C_c^+ C_1^- (C_c^+)^{-1} , \]
and
\[D_\infty = C_\infty^+ C_\infty^- . \]

Then the homotopy classes of the \(D \)'s generate
\[\pi_1(\mathbb{P}^1 - \{ \pm \sqrt{-c}, \pm \sqrt{1 - c}, \infty, 0 \}) . \]

It is clear from Figure II that the product
\[\left[D_{\sqrt{-c}} \right]\left[D_{\sqrt{1-c}} \right]\left[D_0 \right]\left[D_{-\sqrt{c}} \right]\left[D_{-\sqrt{1-c}} \right]\left[D_\infty \right] = 1 . \]

The above definitions imply the following results.

Lemma 6.2. The images \(M'(\langle D \rangle) \) and \(i_\ast(M'(\langle D \rangle)) \) are as listed in Table I. Furthermore, if \(\delta = j_\ast(\langle D \rangle) \), then \(M(\delta) = \chi(M'(\langle D \rangle)) \). Finally, the \(M(\delta) \)'s can be written in the form \(A^{-1}(1, 1)A \), for some \(\begin{pmatrix} A \end{pmatrix} \in \text{SL}(2, \mathbb{Z}) \).
Corollary 6.3. The map

\[M: \pi_1(\mathbb{P}^1 - \{ \pm \sqrt{-c} , \pm \sqrt{1 - c} , \infty \}) \to \pi_1(\mathbb{P}^1 - \{ 0, 1, \infty \}) \]

is surjective.

Table I

<table>
<thead>
<tr>
<th>[D]</th>
<th>M'[D]</th>
<th>(i_*(M([D])))</th>
<th>(A^{-1}(\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix})A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([D_0])</td>
<td>([C_c])^2</td>
<td>(\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix})</td>
<td>(\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix})</td>
</tr>
<tr>
<td>([D_\sqrt{-c}])</td>
<td>([C_0])</td>
<td>(\begin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix})</td>
<td>(\begin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix})</td>
</tr>
<tr>
<td>([D_\sqrt{1-c}])</td>
<td>([C_1])</td>
<td>(\begin{pmatrix} 1 & 0 \ -2 & 1 \end{pmatrix})</td>
<td>(\begin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix})</td>
</tr>
<tr>
<td>([D_\sqrt{1+c}])</td>
<td>([C_\infty] \times [C_0] \times [C_\infty]^{-1})</td>
<td>(\begin{pmatrix} 2 & -3 \ 0 & 1 \end{pmatrix})</td>
<td>(\begin{pmatrix} -3 & 2 \ -2 & 1 \end{pmatrix})</td>
</tr>
<tr>
<td>([D_\sqrt{1-c}])</td>
<td>([C_\infty] \times [C_1] \times [C_\infty]^{-1})</td>
<td>(\begin{pmatrix} 1 & 0 \ -2 & 1 \end{pmatrix})</td>
<td>(\begin{pmatrix} -3 & 2 \ -2 & 1 \end{pmatrix})</td>
</tr>
<tr>
<td>([D_\infty])</td>
<td>([C_\infty])^2</td>
<td>(\begin{pmatrix} 1 & 0 \ -3 & 1 \end{pmatrix})</td>
<td>(\begin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix})</td>
</tr>
</tbody>
</table>

7. The scalar product. The following is a specialization of [6], which is in turn an application of techniques of Shimura [12].

For \(P, Q \in G \), let \(F_P, f_P, F_Q \) and \(f_Q \) be as in §5. We define a scalar product on \(G \) as follows:

\[I(P, Q) = \int_{\partial \Pi} F_P f_Q d\omega(u), \]

where \(\Pi \) is any fundamental domain for \(\pi_1(X) \) with \(u_0 \) (the point above \(t = 0 \)) in the interior of \(\Pi \).

For the proof that this integral converges, we refer to Hoyt ([2] and [5]). That \(I(P, Q) \) is independent of the choice of \(\Pi \) follows from the way \(F_P, f_Q \) and \(\omega \) are transformed by \(\sigma \in \pi_1(X) \), together with the proof of bilinearity below.

Proposition 7.1. \(I(P, Q) \) is a symmetric bilinear form on \(G \).

Proof. Observe that \(F_p \) and \(f_Q \) are holomorphic on \(\partial \Pi \), and that \(\omega' = 0 \) only at points where \(t = 0 \). Then

\[\frac{dF_p}{d\omega} = \left(\frac{dF_p}{d\omega} \right) / \left(\frac{d\omega}{d\nu} \right), \]

\(dF_Q/d\omega, d^2F_p/d\omega^2 = f_p \), and \(f_Q \) are all holomorphic on \(\partial \Pi \).

That \(I(P, Q) = I(Q, P) \) follows from the definition, together with two applications of integration by parts.

That \(I(P + P', Q) = I(P, Q) + I(P', Q) \) follows from the fact that \(F_{P+P'} = F_P + F_P + a\omega(u) + b \), for some integers \(a \) and \(b \). Thus, one need only observe that

\[\int_{\partial \Pi} (a\omega(u) + b)f_Q d\omega(u) = \int_{\partial \Pi} \frac{d^2}{d\omega^2} (a\omega(u) + b)F_Q d\omega(u) = 0. \] Q.E.D.
We remark that this bilinear form is the restriction of a bilinear form defined on the space of cusp forms of the second kind, of weight 3, relative to a process of base extension, as in Hoyt [5]. The above proof is an adaptation of a proof in [5].

Theorem 7.2. For all $P, Q \in G$, $4I(P, Q)$ is an integer.

For the proof, denote F_P by F, f_P by f, F_Q by G and f_Q by g; denote $\omega(u)$ by τ.

Proof. Recall that F is an Eichler integral for f:

$$F(u) = \int_{u_1}^{u} f(\xi)(\omega(u) - \omega(\xi)) \, d\omega(\xi).$$

Then the integrand in the definition of I can be rewritten as

$$F_{g} \, d\tau = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} dG$$

in terms of the vector valued differentials and functions

$$dG = \begin{pmatrix} \tau \\ 1 \end{pmatrix} g \, d\tau,$$

$$F = \int_{u_1}^{u} \begin{pmatrix} \tau \\ 1 \end{pmatrix} f \, d\tau = \int_{u_1}^{u} dF,$$

$$F = - (\tau, 1) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} F.$$

If $\!\theta \in \pi_1(X)$ and if $M(\!\theta) = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right)$, then F and F have periods $(p(\!\theta), q(\!\theta))$ and $X(\!\theta)$, respectively, which satisfy

$$F \circ \!\theta = (ct + d)^{-1}(F + p(\!\theta)\tau + q(\!\theta)),$$

$$F \circ \!\theta = M(\!\theta)F + X(\!\theta),$$

and

$$X(\!\theta^{-1}) = \begin{pmatrix} q(\!\theta) \\ -p(\!\theta) \end{pmatrix} = -M(\!\theta^{-1})X(\!\theta).$$

As in §5, $p(\!\theta)$ and $q(\!\theta)$ are integers, hence, $X(\!\theta)$ is an integer vector. Similarly let $Y(\!\theta)$ be defined by

$$G \circ \!\theta = M(\!\theta)G + Y(\!\theta).$$

Observe that X and Y satisfy the cocycle condition: if $\!\rho, \!\sigma \in \pi_1(X)$, then $X(\!\rho \circ \!\sigma) = X(\!\rho) + M(\!\rho)X(\!\sigma)$.

Finally, observe that, for $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \text{SL}(2, \mathbb{Z})$,

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Denote the matrix $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right)$ by P.

Choose Π as in Shimura [12]. However, in the present (specialized) case, the genus of the Riemann surface X is zero, and the generators of $\pi_1(X)$ are all parabolic. Then Π is a polygon with five pairs of edges, $D_k, -D_k$, corresponding to the five generators δ_k, with the relation $\delta_2\delta_4\delta_3\delta_2\delta_1 = 1$. (Each δ_k is one of the δ's of Table I.) Let v_0 (the starting point of the edge D_1) be chosen to be a point not a cusp and not above $t = 0$. Let s_k be the cusp stabilized by δ_k. Observe that the edge D_k runs from $\delta_{k-1} \cdots \delta_1(v_0)$ to s_k, and that $-\delta_k D_k$ runs from s_k to $\delta_k \cdots \delta_1(v_0)$.
Then

\[I(P, Q) = \int_{\partial \Omega} 'F_P dG = \sum_{k=1}^{5} \int_{D_k} 'F_P dG - \int_{\delta_k D_k} 'F_P dG. \]

But

\[\int_{\delta_k D_k} 'F_P dG = \int_{D_k} 'F(P \circ \delta_k) P d(G \circ \delta_k) \]

\[= \int_{D_k} 'F(M(\delta_k)F + X(\delta_k))PM(\delta_k) dG \]

\[= \int_{D_k} 'F_P dG + 'X(\delta_k)PM(\delta_k) \int_{D_k} dG. \]

So

\[I(P, Q) = \sum_{k=1}^{5} 'X(\delta_k)PM(\delta_k) \int_{D_k} dG = \sum_{k=1}^{5} 'X(\delta_k^{-1})P \int_{D_k} dG \]

\[= \sum_{k=1}^{5} 'X(\delta_k^{-1})P[G(s_k) - G(\delta_{k-1} \cdots \delta_1 v_0)] \]

\[= \sum_{k=1}^{5} 'X(\delta_k^{-1})PG(s_k) \]

\[- \sum_{k=1}^{5} 'X(\delta_k^{-1})P[M(\delta_{k-1} \cdots \delta_1)G(v_0) + Y(\delta_{k-1} \cdots \delta_1)]. \]

Observe that

\[\sum_{k=1}^{5} 'X(\delta_k^{-1})PM(\delta_{k-1} \cdots \delta_1) = \sum_{k=1}^{5} 'X(\delta_k^{-1})'M((\delta_{k-1} \cdots \delta_1)^{-1})P \]

\[= \sum_{k=1}^{5} 'M(\delta_{k-1} \cdots \delta_1)^{-1}X(\delta_k^{-1}))P \]

\[= \sum_{k=1}^{5} ['X((\delta_k \cdots \delta_1)^{-1}) - X((\delta_{k-1} \cdots \delta_1)^{-1})]P \]

\[= 0, \]

since \(\delta_5 \delta_4 \delta_3 \delta_2 \delta_1 = 1. \) But

\[\sum_{k=1}^{5} 'X(\delta_k^{-1})PY(\delta_{k-1} \cdots \delta_1) \]

is an integer. We now show that four times \('X(\delta_k^{-1})PG(s_k) \) is an integer, \(k = 1, \ldots, 5. \)

It has already been observed that, for each \(\delta_k \) in Table I, \(M(\delta_k) \) can be written in the form \(A^{-1}(1, 0)A \), for some \(A = A_k = (a \ b, c \ d) \in \text{SL}(2, \mathbb{Z}). \) Notice, from the definition of \(X(\delta) \), and from the fact that \(\delta_k^{-1}(s_k) = s_k \), that

\[X(\delta_k^{-1}) = (I - M(\delta_k^{-1}))F(s_k), \]
where I is the identity matrix. If $F(s_k) = \left(\begin{array}{c} c \\ d \end{array} \right)$ and $G(s_k) = \left(\begin{array}{c} e \\ f \end{array} \right)$, then

$$X(\delta_k^{-1}) = q(cu + dv)\left(\begin{array}{c} d \\ -c \end{array} \right),$$

$$Y(\delta_k^{-1}) = q(cw + dz)\left(\begin{array}{c} d \\ -c \end{array} \right),$$

$$'X(\delta_k^{-1})PG(s_k) = -q(cu + dv)(cw + dz),$$

and

$$'X(\delta_k^{-1})'AAY(\delta_k^{-1}) = q^2(cu + dv)(cw + dz).$$

But this last expression is necessarily an integer, being a product of integer matrices; hence $q_k'X(\delta_k^{-1})PG(s_k)$ is an integer for all k. Hence $4I(P, Q)$ must be an integer, since 4 is the least common multiple of the q_k's. Q.E.D.

8. Application of the bilinear form. In this section, we show that P_0 (the solution found in §2) is not a multiple of any other solution. We will need the following

Lemma 8.1. The following two differential operators are equal:

$$(2\pi i)^{-2}(\lambda - 1)s^3\mathcal{L}(-) = (d^2/dr^2)(-/s).$$

Proof. See [7, Theorem 1.7].

We will also need

Lemma 8.2. $X'(\tau) = (1/m)X(\lambda) - 1)s^2$.

Proof. See [7, Lemma 1.6].

Proposition 8.3. $I(P_0, P_0) = \frac{1}{4}$.

Proof. We wish to find the residue of the integrand $F_\tau F_\tau d\omega(u)$ at each of its poles in Π. However, since F_τ and ω are holomorphic in Π, the only pole is where ω' is zero, that is, at u_0, a point lying above $\tau = 0$. Since $\tau = \omega(u)$ is ramified of order 2 at $u = u_0$, we will take $(\tau - \tau_0)^{1/2}$ as the parameter near u_0 ($\tau_0 = \omega(u_0)$), and will find the expansion of the integrand in terms of this parameter.

Since F_τ can be computed by $F_\tau(u) = (2s(\omega(u)))^{-1} \int_0^\infty y^{-1} dx$, then

$$f_\tau = \frac{d^2}{d\omega^2} F_\tau = \frac{\lambda(\lambda - 1)s^3}{2(2\pi i)^2} \int_{2\pi}^{\infty} y^{-1} dx = \left[\frac{\lambda(\lambda - 1)s^3}{(2(2\pi i)^2)} \right] \frac{i(b - c)}{t^3}.$$

We compute the leading term of each of the functions λ, $\lambda - 1$, s^3, and t^{-3}, in terms of the parameter $(\tau - \tau_0)^{1/2}$:

$$\lambda = \lambda(\tau_0) + \lambda'(\tau_0)(\tau - \tau_0) + \text{higher order terms}$$

$$= c + (1/\pi i)\lambda(\tau_0)(\lambda(\tau_0) - 1)s(\tau_0)^2(\tau - \tau_0) + \text{H.O.T.}$$

$$= c + (1/\pi i)(c^2 - c)s(\tau_0)^2(\tau - \tau_0) + \text{H.O.T.,}$$

$$\lambda - 1 = (c - 1) + \text{H.O.T.,}$$

$$s(\tau)^3 = s(\tau_0)^3 + \text{H.O.T.,}$$

$$t = (\lambda - c)^{1/2} = ((1/\pi i)(c^2 - c)s(\tau_0)^2(\tau - \tau_0))^{1/2} + \text{H.O.T.}$$
RATIONAL SOLUTIONS OF $y^2 = x(x - 1)(x - t^2 - c)$

and

$$t^{-3} = s(\tau_0)^{-3}((1/\pi i)(c^2 - c))^{-3/2}(\tau - \tau_0)^{-3/2} + \text{H.O.T.}$$

Since $(b - c)^2 = c^2 - c$ (equation (2.2))

$$f_{P_0} = (i/ (8(\pi i)^{1/2}))(\tau - \tau_0)^{-3/2} + \text{H.O.T.}$$

Suppose F_{P_0} has the power series expansion $\sum_{\infty} a_j(\tau - \tau_0)^{-j/2}$. Then f_{P_0} has the expansion

$$-rac{1}{4} a_1(\tau - \tau_0)^{-3/2} + \sum_{j=3}^{\infty} \left(\frac{j(j - 2)}{4} \right) a_j(\tau - \tau_0)^{(j-4)/2},$$

and $a_1 = -i/(2(\pi i)^{1/2})$. Notice that f_{P_0} has no term in $(\tau - \tau_0)^{-2}$ or $(\tau - \tau_0)^{-1}$, so that the a_0 and a_2 terms of F_{P_0} will not enter into the calculation.

Since $\tau = ((\tau - \tau_0)^{1/2} + \tau_0, \tau) = 2(\tau - \tau_0)^{1/2}(\tau - \tau_0)^{1/2}$. Then

$$I(P_0, P_0) = \int_{\Pi} f_{P_0} F_{P_0} \, d\tau = 2\pi i(\text{residue of } f_{P_0} F_{P_0} \, d\tau \text{ at } u_0)$$

$$= 2\pi i(i/ (8(\pi i)^{1/2}))(2(\pi i)^{1/2}) \cdot 2 = 4. \quad \text{Q.E.D.}$$

Corollary 8.4. P_0 is not a multiple of any element of G.

Proof. Suppose P_0 is some multiple, say $P_0 = qQ_0$. Since I is bilinear,

$$I(P_0, P_0) = 4I(qQ_0, qQ_0) = 4q^2I(Q_0, Q_0).$$

Since $4I(P, Q) \in \mathbb{Z}$, it follows that $1/q^2$ must be an integer. \quad \text{Q.E.D.}

9. The torsion subgroup. In this section we prove the following:

Theorem 9.1. The torsion subgroup of G is $\{(0, 0), (1, 0), (t^2 + c, 0), \infty\}$.

Proof. These are obviously solutions; by the definition of addition in the group, it is clear that the first three are of order 2. The following is well known:

Lemma 9.2. The group of solutions of a Weierstrass equation has at most N^2 elements whose order divides N.

Proof. See Tate [14, pp. 2–5]. \quad \text{Q.E.D.}

The following proposition will complete the proof of Theorem 9.1, and also Theorem 1.1.

Proposition 9.3. If P is a torsion element of G, then P is of order 2.

Proof. Let P be a torsion element; then $\mu(P) = 0$. Since $F_P = (1/2\pi) \int_{-\infty}^{\infty} y^{-1} \, dx$, $(d^2/du^2)F_P = 0$. Hence $F_P = a\omega(u) + \beta$, for some $a, \beta \in \mathbb{C}$.

For $\sigma \in \pi_1(\mathbb{C} - \{ \pm \sqrt{-c}, \pm \sqrt{1 - c} \})$, let $M(\sigma) = (\alpha \beta)$. Then

$$\omega(\sigma(u)) = (M(\sigma) \circ \omega)(u) = (a\omega(u) + b)(c\omega(u) + d)^{-1};$$

also

$$(F_P \circ \sigma)(u) = (c\omega(u) + d)^{-1}(F_P(u) + m\omega(u) + n)$$

$$= (c\omega(u) + d)^{-1}((a + m)\omega(u) + \beta + n),$$

where $m, n \in \mathbb{Z}$.

On the other hand,
\[(F_p \circ \sigma)(u) = \alpha \omega(\sigma(u)) + \beta = \alpha(\omega(u) + b)(\omega(u) + d)^{-1} + \beta.\]
Therefore
\[\alpha(\omega(u) + b) + \beta(\omega(u) + d) = (\alpha + m)\omega(u) + \beta + n.\]
Let
\[\sigma = j_\ast \left([D \sqrt{-\tau}]^{-1} [D \sqrt{-\tau}] \right),\]
as in Table I. Then
\[M(\sigma) = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}.\]
Then, using this \(\sigma\), we get
\[\alpha(\omega(u) + 2) + \beta(2\omega(u) + 5) = (\alpha + m)\omega(u) + \beta + n,\]
so \(\alpha + 2\beta = \alpha + m\), and \(2\alpha + 5\beta = \beta + n\). Therefore \(\alpha = n/2 - m\), and \(\beta = m/2\). Then \(2F_p\) is an integer combination of \(\omega\) and 1, and \(\int_0^2 P y^{-1} dx\) is an integer combination of the periods \(2s(\omega(u))\omega(u)\) and \(2s(\omega(u))\). Hence the path from \(\infty\) to \(2F\) is a loop, and \(2P = \infty\). Therefore \(P\) has order 2. Q.E.D.

Bibliography