On the Hardy-Littlewood maximal function and some applications
HTML articles powered by AMS MathViewer
- by C. J. Neugebauer
- Trans. Amer. Math. Soc. 259 (1980), 99-105
- DOI: https://doi.org/10.1090/S0002-9947-1980-0561825-7
- PDF | Request permission
Abstract:
With a monotone family $F = \{ {S_\alpha }\} , {S_\alpha } \subset {{\textbf {R}}^n}$, we associate the Hardy-Littlewood maximal function ${M_F}f(x) = {\sup _\alpha }(1/\left | {{S_\alpha }} \right |)\int _{{S_\alpha } + x} {\left | f \right |}$. In general, ${M_F}$ is not weak type (1.1). However, if we replace in the denominator ${S_\alpha }$ by $S_F^ {\ast } = \{ x - y: x, y \in {S_\alpha }\}$, and denote the resulting maximal function by $M_F^ {\ast }$, then $M_F^ {\ast }$ is weak type (1, 1) with weak type constant 1.References
- Luis A. Caffarelli and Calixto P. Calderón, Weak type estimates for the Hardy-Littlewood maximal functions, Studia Math. 49 (1973/74), 217–223. MR 335729, DOI 10.4064/sm-49-3-217-223
- Calixto P. Calderón, Differentiation through starlike sets in $\textbf {R}^{m}$, Studia Math. 48 (1973), 1–13. MR 330395, DOI 10.4064/sm-48-1-1-13
- R. E. Edwards and Edwin Hewitt, Pointwise limits for sequences of convolution operators, Acta Math. 113 (1965), 181–218. MR 177259, DOI 10.1007/BF02391777 M. Guzmán, Differentiation of integrals in ${{\textbf {R}}^n}$, Lecture Notes in Math., vol. 481, Springer-Verlag, Berlin and New York, 1975.
- N. M. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243–278. MR 440268, DOI 10.1007/BF02383650 S. Saks, Remark on the differentiability of the Lebesgue indefinite integral, Fund. Math. 22 (1934), 257-261.
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 259 (1980), 99-105
- MSC: Primary 42B25; Secondary 28A15
- DOI: https://doi.org/10.1090/S0002-9947-1980-0561825-7
- MathSciNet review: 561825