Subspaces of basically disconnected spaces or quotients of countably complete Boolean algebras
HTML articles powered by AMS MathViewer
- by Eric K. van Douwen and Jan van Mill
- Trans. Amer. Math. Soc. 259 (1980), 121-127
- DOI: https://doi.org/10.1090/S0002-9947-1980-0561827-0
- PDF | Request permission
Abstract:
Under ${\text {MA}} {\text { + }} {{\text {2}}^\omega } = {\omega _2}$ there is a (compact) strongly zero-dimensional F-space of weight ${2^\omega }$ which cannot be embedded in any basically disconnected space. Dually, under ${\text {MA}} + {2^\omega } = {\omega _2}$ there is a weakly countably complete (or almost $\sigma$-complete, or countable separation property) Boolean algebra of cardinality ${2^\omega }$ which is not a homomorphic image of any countably complete Boolean algebra. The key to our construction is the observation that if X is a subspace of a basically disconnected space and $\beta \omega \subseteq X$ then $\beta \omega$ is a retract of X. Dually, if B is a homomorphic image of a countably complete Boolean algebra, and if h is a homomorphism from B onto $\mathcal {P}(\omega )$, the field of subsets of w, then there is an embedding $e: \mathcal {P}(\omega ) \to B$ such that $h \circ e = {\text {i}}{{\text {d}}_{\mathcal {P}(\omega )}}$.References
- Eric K. van Douwen, A basically disconnected normal space $\Phi$ with $\beta \Phi -\Phi =1$, Canadian J. Math. 31 (1979), no. 5, 911–914. MR 546947, DOI 10.4153/CJM-1979-086-3 —, Cardinal functions on compact F-spaces and on weakly countably complete Boolean algebras (to appear). —, Functions from the integers to the integers and topology (to appear).
- Eric K. van Douwen and Jan van Mill, Parovičenko’s characterization of $\beta \omega -\omega$ implies CH, Proc. Amer. Math. Soc. 72 (1978), no. 3, 539–541. MR 509251, DOI 10.1090/S0002-9939-1978-0509251-7
- Leonard Gillman and Melvin Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366–391. MR 78980, DOI 10.1090/S0002-9947-1956-0078980-4
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- R. W. Heath, Separability and $\aleph _{1}$-compactness, Colloq. Math. 12 (1964), 11–14. MR 167952, DOI 10.4064/cm-12-1-11-14
- F. B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc. 43 (1937), no. 10, 671–677. MR 1563615, DOI 10.1090/S0002-9904-1937-06622-5
- Sabine Koppelberg, Homomorphic images of $\sigma$-complete Boolean algebras, Proc. Amer. Math. Soc. 51 (1975), 171–175. MR 376475, DOI 10.1090/S0002-9939-1975-0376475-9
- Alain Louveau, Caractérisation des sous-espaces compacts de $\beta \textbf {N}$, Bull. Sci. Math. (2) 97 (1973), 259–263 (1974) (French). MR 353261
- Eric K. van Douwen, J. Donald Monk, and Matatyahu Rubin, Some questions about Boolean algebras, Algebra Universalis 11 (1980), no. 2, 220–243. MR 588216, DOI 10.1007/BF02483101
- C. W. Proctor, A separable pseudonormal nonmetrizable Moore space, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 179–181 (English, with Russian summary). MR 263023
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 259 (1980), 121-127
- MSC: Primary 54G05; Secondary 03E50, 06E05, 54C15, 54C25
- DOI: https://doi.org/10.1090/S0002-9947-1980-0561827-0
- MathSciNet review: 561827