The von Neumann kernel and minimally almost periodic groups
HTML articles powered by AMS MathViewer
- by Sheldon Rothman PDF
- Trans. Amer. Math. Soc. 259 (1980), 401-421 Request permission
Abstract:
We calculate the von Neumann kernel $n(G)$ of an arbitrary connected Lie group. As a consequence we see that the closed characteristic subgroup $n(G)$ is also connected. It is shown that any Levi factor of a connected Lie group is closed. Then, various characterizations of minimal almost periodicity for a connected Lie group are given. Among them is the following. A connected Lie group G with radical R is minimally almost periodic (m.a.p.) if and only if $G/R$ is semisimple without compact factors and $G = {[G, G]^ - }$. In the special case where R is also simply connected it is proven that $G = [G, G]$. This has the corollary that if the radical of a connected m.a.p. Lie group is simply connected then it is nilpotent. Next we prove that a connected m.a.p. Lie group has no nontrivial automorphisms of bounded displacement. As a consequence, if G is a m.a.p. connected Lie group, H is a closed subgroup of G such that $G/H$ has finite volume, and $\alpha$ is an automorphism of G with ${\text {disp}}(\alpha , H)$ bounded, then $\alpha$ is trivial. Using projective limits of Lie groups we extend most of our results on the characterization of m.a.p. connected Lie groups to arbitrary locally compact connected topological groups, and finally get a new and relatively simple proof of the Freudenthal-Weil theorem.References
- J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560
- A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. (2) 38 (1937), no. 3, 533–550. MR 1503352, DOI 10.2307/1968599
- Hans Freudenthal, Topologische Gruppen mit genügend vielen fastperiodischen Funktionen, Ann. of Math. (2) 37 (1936), no. 1, 57–77 (German). MR 1503269, DOI 10.2307/1968687
- Harry Furstenberg, A note on Borel’s density theorem, Proc. Amer. Math. Soc. 55 (1976), no. 1, 209–212. MR 422497, DOI 10.1090/S0002-9939-1976-0422497-X
- Morikuni Gotô, Faithful representations of Lie groups. I, Math. Japon. 1 (1948), 107–119. MR 29919
- Morikuni Gotô, Linear representations of topological groups, Proc. Amer. Math. Soc. 1 (1950), 425–437. MR 38982, DOI 10.1090/S0002-9939-1950-0038982-0
- F. P. Greenleaf and M. Moskowitz, Groups of automorphisms of Lie groups: density properties, bounded orbits, and homogeneous spaces of finite volume, Pacific J. Math. 86 (1980), no. 1, 59–87. MR 586869
- Frederick P. Greenleaf, Martin Moskowitz, and Linda Preiss Rothschild, Unbounded conjugacy classes in Lie groups and location of central measures, Acta Math. 132 (1974), 225–243. MR 425035, DOI 10.1007/BF02392116
- Frederick P. Greenleaf, Martin Moskowitz, and Linda Preiss-Rothschild, Automorphisms, orbits, and homogeneous spaces of non-connected Lie groups, Math. Ann. 212 (1974/75), 145–155. MR 360928, DOI 10.1007/BF01350782
- Siegfried Grosser and Martin Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317–340. MR 209394, DOI 10.1090/S0002-9947-1967-0209394-9
- Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1–40. MR 284541, DOI 10.1515/crll.1971.246.1
- G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. MR 0207883
- Ter Jenq Huang, On topologies of maximally almost periodic groups, Proc. Amer. Math. Soc. 69 (1978), no. 2, 251–254. MR 487291, DOI 10.1090/S0002-9939-1978-0487291-4
- Kenkichi Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507–558. MR 29911, DOI 10.2307/1969548
- Masatake Kuranishi, On non-connected maximally almost periodic groups, Tohoku Math. J. (2) 2 (1950), 40–46. MR 41861, DOI 10.2748/tmj/1178245669
- Yozô Matsushima, On the decomposition of an $(L)$-group, J. Math. Soc. Japan 1 (1950), 264–274. MR 39735, DOI 10.2969/jmsj/00140264
- Martin Moskowitz, On pro-reductive groups, Proc. Cambridge Philos. Soc. 76 (1974), 401–406. MR 346092, DOI 10.1017/s0305004100049070
- Martin Moskowitz, Some remarks on automorphisms of bounded displacement and bounded cocycles, Monatsh. Math. 85 (1978), no. 4, 323–336. MR 510628, DOI 10.1007/BF01305961
- Martin Moskowitz, On the density theorems of Borel and Furstenberg, Ark. Mat. 16 (1978), no. 1, 11–27. MR 507233, DOI 10.1007/BF02385980
- Shingo Murakami, Remarks on the structure of maximally almost periodic groups, Osaka Math. J. 2 (1950), 119–129. MR 41860
- J. v. Neumann, Almost periodic functions in a group. I, Trans. Amer. Math. Soc. 36 (1934), no. 3, 445–492. MR 1501752, DOI 10.1090/S0002-9947-1934-1501752-3
- J. v. Neumann and E. P. Wigner, Minimally almost periodic groups, Ann. of Math. (2) 41 (1940), 746–750. MR 2891, DOI 10.2307/1968853
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234 J. Tits, Automorphisms a déplacement borné des groupes de Lie, Topology 3 (1964), 97-107. B. L. van der Waerden, Stetigkeitssatzeder halbeinfachen LieschenGruppen, Math. Z. 36 (1933), 780-786. A. Weil, L’integration dans les groupes topologiques et ses applications (2nd ed.), Hermann, Paris, 1965.
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 259 (1980), 401-421
- MSC: Primary 22E15; Secondary 22D05, 43A60
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567087-9
- MathSciNet review: 567087