Central Fourier-Stieltjes transforms with an isolated value
HTML articles powered by AMS MathViewer
- by Alan Armstrong PDF
- Trans. Amer. Math. Soc. 259 (1980), 423-437 Request permission
Abstract:
Let $\mu$ be a central Borel measure on a compact, connected group G. If 0 is isolated in the range of ${\hat \mu }$, then there exists a closed, normal subgroup H of G such that ${\pi _H}\mu$, the restriction of $\mu$ to the cosets of H, is the convolution of an invertible measure with a nonzero idempotent measure. This result extends I. Glicksberg’s result for LCA groups. An example is given which shows that this result is false in general for disconnected groups.References
- Takasi Itô and Ichiro Amemiya, A simple proof of the theorem of P. J. Cohen, Bull. Amer. Math. Soc. 70 (1964), 774–776. MR 167590, DOI 10.1090/S0002-9904-1964-11233-7
- I. Glicksberg, Fourier-Stieltjes transforms with an isolated value, Conference on Harmonic Analysis (Univ. Maryland, College Park, Md., 1971), Lecture Notes in Math., Vol. 266, Springer, Berlin, 1972, pp. 59–72. MR 0394050
- I. Glicksberg and I. Wik, The range of Fourier-Stieltjes transforms of parts of measures, Conference on Harmonic Analysis (Univ. Maryland, College Park, Md., 1971), Lecture Notes in Math., Vol. 266, Springer, Berlin, 1972, pp. 73–77. MR 0433145
- Frederick P. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J. Math. 15 (1965), 1187–1219. MR 194911
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496 —, Abstract harmonic analysis. Vol. II, Springer-Verlag, Berlin and New York, 1970.
- Calvin C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401–410. MR 302817, DOI 10.1090/S0002-9947-1972-0302817-8
- David L. Ragozin, Central measures on compact simple Lie groups, J. Functional Analysis 10 (1972), 212–229. MR 0340965, DOI 10.1016/0022-1236(72)90050-x
- Daniel Rider, Central idempotent measures on unitary groups, Canadian J. Math. 22 (1970), 719–725. MR 264333, DOI 10.4153/CJM-1970-082-5
- Daniel Rider, Central idempotent measures on compact groups, Trans. Amer. Math. Soc. 186 (1973), 459–479 (1974). MR 340961, DOI 10.1090/S0002-9947-1973-0340961-0
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834 A. Weil, L’intégration dans les groupes topologiques et ses applications, Actualités Sci. Indust., Hermann, Paris, 1938, pp. 869-1145.
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 259 (1980), 423-437
- MSC: Primary 43A10; Secondary 43A25
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567088-0
- MathSciNet review: 567088