Some curvature properties of locally conformal Kähler manifolds
HTML articles powered by AMS MathViewer
- by Izu Vaisman
- Trans. Amer. Math. Soc. 259 (1980), 439-447
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567089-2
- PDF | Request permission
Abstract:
Curvature identities and holomorphic sectional curvature of locally conformal Kähler manifolds are investigated. Particularly, sufficient conditions for such manifolds to be globally conformal Kähler are derived.References
- Samuel I. Goldberg, Curvature and homology, Pure and Applied Mathematics, Vol. XI, Academic Press, New York-London, 1962. MR 0139098
- Alfred Gray, Curvature identities for Hermitian and almost Hermitian manifolds, Tohoku Math. J. (2) 28 (1976), no. 4, 601–612. MR 436054, DOI 10.2748/tmj/1178240746 S. Kobayashi and K. Nomizu, Foundations of differential geometry. II, Interscience, New York, 1969.
- Paulette Libermann, Sur les structures presque complexes et autres structures infinitésimales régulières, Bull. Soc. Math. France 83 (1955), 195–224 (French). MR 79766, DOI 10.24033/bsmf.1460
- Izu Vaisman, On locally conformal almost Kähler manifolds, Israel J. Math. 24 (1976), no. 3-4, 338–351. MR 418003, DOI 10.1007/BF02834764 —, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. (to appear).
- Izu Vaisman, Remarkable operators and commutation formulas on locally conformal Kähler manifolds, Compositio Math. 40 (1980), no. 3, 287–299. MR 571051
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 259 (1980), 439-447
- MSC: Primary 53C55
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567089-2
- MathSciNet review: 567089