## On linear algebraic semigroups

HTML articles powered by AMS MathViewer

- by Mohan S. Putcha
- Trans. Amer. Math. Soc.
**259**(1980), 457-469 - DOI: https://doi.org/10.1090/S0002-9947-1980-0567091-0
- PDF | Request permission

## Abstract:

Let*K*be an algebraically closed field. By an algebraic semigroup we mean a Zariski closed subset of ${K^n}$ along with a polynomially defined associative operation. Let

*S*be an algebraic semigroup. We show that

*S*has ideals ${I_0}, \ldots , {I_t}$ such that $S = {I_t} \supseteq \cdots \supseteq {I_0}$, ${I_0}$ is the completely simple kernel of

*S*and each Rees factor semigroup ${I_k}/{I_{k - 1}}$ is either nil or completely 0-simple $(k = 1, \ldots , t)$. We say that

*S*is connected if the underlying set is irreducible. We prove the following theorems (among others) for a connected algebraic semigroup

*S*with idempotent set $E(S)$. (1) If $E(S)$ is a subsemigroup, then

*S*is a semilattice of nil extensions of rectangular groups. (2) If all the subgroups of

*S*are abelian and if for all $a \in S$, there exists $e \in E(S)$ such that $ea = ae = a$, then

*S*is a semilattice of nil extensions of completely simple semigroups. (3) If all subgroups of

*S*are abelian and if

*S*is regular, then

*S*is a subdirect product of completely simple and completely 0-simple semigroups. (4)

*S*has only trivial subgroups if and only if

*S*is a nil extension of a rectangular band.

## References

- GorĂ´ Azumaya,
*Strongly $\pi$-regular rings*, J. Fac. Sci. Hokkaido Univ. Ser. I.**13**(1954), 34â€“39. MR**0067864** - Armand Borel,
*Linear algebraic groups*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR**0251042** - W. Edwin Clark,
*Remarks on the kernel of a matrix semigroup*, Czechoslovak Math. J.**15(90)**(1965), 305â€“310 (English, with Russian summary). MR**177047** - W. Edwin Clark,
*Affine semigroups over an arbitrary field*, Proc. Glasgow Math. Assoc.**7**(1965), 80â€“92 (1965). MR**190245**
â€”, Private communication.
- A. H. Clifford and G. B. Preston,
*The algebraic theory of semigroups. Vol. I*, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR**0132791** - P. M. Cohn,
*Universal algebra*, Harper & Row, Publishers, New York-London, 1965. MR**0175948** - Michel Demazure and Pierre Gabriel,
*Groupes algĂ©briques. Tome I: GĂ©omĂ©trie algĂ©brique, gĂ©nĂ©ralitĂ©s, groupes commutatifs*, Masson & Cie, Ă‰diteurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice*Corps de classes local*par Michiel Hazewinkel. MR**0302656** - M. P. Drazin,
*Pseudo-inverses in associative rings and semigroups*, Amer. Math. Monthly**65**(1958), 506â€“514. MR**98762**, DOI 10.2307/2308576 - GĂ©rard Lallement,
*Demi-groupes rĂ©guliers*, Ann. Mat. Pura Appl. (4)**77**(1967), 47â€“129 (French). MR**225915**, DOI 10.1007/BF02416940 - W. D. Munn,
*Pseudo-inverses in semigroups*, Proc. Cambridge Philos. Soc.**57**(1961), 247â€“250. MR**121410**, DOI 10.1017/s0305004100035143 - Mario Petrich,
*Associative polynomial multiplications over an infinite integral domain*, Math. Nachr.**29**(1965), 65â€“75. MR**190250** - R. J. Plemmons and R. Yoshida,
*Generating polynomials for finite semigroups*, Math. Nachr.**47**(1970), 69â€“75. MR**283114**, DOI 10.1002/mana.19700470109 - Mohan S. Putcha,
*Semilattice decompositions of semigroups*, Semigroup Forum**6**(1973), no.Â 1, 12â€“34. MR**369582**, DOI 10.1007/BF02389104 - Mohan S. Putcha,
*Quadratic semigroups on affine spaces*, Linear Algebra Appl.**26**(1979), 107â€“121. MR**535681**, DOI 10.1016/0024-3795(79)90174-5 - Mohan S. Putcha and Julian Weissglass,
*A semilattice decomposition into semigroups having at most one idempotent*, Pacific J. Math.**39**(1971), 225â€“228. MR**304523** - I. R. Shafarevich,
*Basic algebraic geometry*, Die Grundlehren der mathematischen Wissenschaften, Band 213, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch. MR**0366917** - Takayuki Tamura,
*The theory of construction of finite semigroups. I*, Osaka Math. J.**8**(1956), 243â€“261. MR**83497** - Takayuki Tamura,
*Another proof of a theorem concerning the greatest semilattice-decomposition of a semigroup*, Proc. Japan Acad.**40**(1964), 777â€“780. MR**179282** - Takayuki Tamura and Naoki Kimura,
*On decompositions of a commutative semigroup*, K\B{o}dai Math. Sem. Rep.**6**(1954), 109â€“112. {Volume numbers not printed on issues until Vol. 7 (1955)}. MR**67106**
R. Yoshida,

*Algebraic systems which admit polynomial operations*, Mem. Res. Inst. Sci. Engrg. Ritsumeikan Univ.

**10**(1963), 1-5. â€”,

*On semigroups*, Bull. Amer. Math. Soc.

**69**(1963), 369-371.

## Bibliographic Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**259**(1980), 457-469 - MSC: Primary 20M10
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567091-0
- MathSciNet review: 567091