On linear algebraic semigroups
HTML articles powered by AMS MathViewer
- by Mohan S. Putcha PDF
- Trans. Amer. Math. Soc. 259 (1980), 457-469 Request permission
Abstract:
Let K be an algebraically closed field. By an algebraic semigroup we mean a Zariski closed subset of ${K^n}$ along with a polynomially defined associative operation. Let S be an algebraic semigroup. We show that S has ideals ${I_0}, \ldots , {I_t}$ such that $S = {I_t} \supseteq \cdots \supseteq {I_0}$, ${I_0}$ is the completely simple kernel of S and each Rees factor semigroup ${I_k}/{I_{k - 1}}$ is either nil or completely 0-simple $(k = 1, \ldots , t)$. We say that S is connected if the underlying set is irreducible. We prove the following theorems (among others) for a connected algebraic semigroup S with idempotent set $E(S)$. (1) If $E(S)$ is a subsemigroup, then S is a semilattice of nil extensions of rectangular groups. (2) If all the subgroups of S are abelian and if for all $a \in S$, there exists $e \in E(S)$ such that $ea = ae = a$, then S is a semilattice of nil extensions of completely simple semigroups. (3) If all subgroups of S are abelian and if S is regular, then S is a subdirect product of completely simple and completely 0-simple semigroups. (4) S has only trivial subgroups if and only if S is a nil extension of a rectangular band.References
- Gorô Azumaya, Strongly $\pi$-regular rings, J. Fac. Sci. Hokkaido Univ. Ser. I. 13 (1954), 34–39. MR 0067864
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- W. Edwin Clark, Remarks on the kernel of a matrix semigroup, Czechoslovak Math. J. 15(90) (1965), 305–310 (English, with Russian summary). MR 177047
- W. Edwin Clark, Affine semigroups over an arbitrary field, Proc. Glasgow Math. Assoc. 7 (1965), 80–92 (1965). MR 190245 —, Private communication.
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
- M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506–514. MR 98762, DOI 10.2307/2308576
- Gérard Lallement, Demi-groupes réguliers, Ann. Mat. Pura Appl. (4) 77 (1967), 47–129 (French). MR 225915, DOI 10.1007/BF02416940
- W. D. Munn, Pseudo-inverses in semigroups, Proc. Cambridge Philos. Soc. 57 (1961), 247–250. MR 121410, DOI 10.1017/s0305004100035143
- Mario Petrich, Associative polynomial multiplications over an infinite integral domain, Math. Nachr. 29 (1965), 65–75. MR 190250
- R. J. Plemmons and R. Yoshida, Generating polynomials for finite semigroups, Math. Nachr. 47 (1970), 69–75. MR 283114, DOI 10.1002/mana.19700470109
- Mohan S. Putcha, Semilattice decompositions of semigroups, Semigroup Forum 6 (1973), no. 1, 12–34. MR 369582, DOI 10.1007/BF02389104
- Mohan S. Putcha, Quadratic semigroups on affine spaces, Linear Algebra Appl. 26 (1979), 107–121. MR 535681, DOI 10.1016/0024-3795(79)90174-5
- Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into semigroups having at most one idempotent, Pacific J. Math. 39 (1971), 225–228. MR 304523
- I. R. Shafarevich, Basic algebraic geometry, Die Grundlehren der mathematischen Wissenschaften, Band 213, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch. MR 0366917
- Takayuki Tamura, The theory of construction of finite semigroups. I, Osaka Math. J. 8 (1956), 243–261. MR 83497
- Takayuki Tamura, Another proof of a theorem concerning the greatest semilattice-decomposition of a semigroup, Proc. Japan Acad. 40 (1964), 777–780. MR 179282
- Takayuki Tamura and Naoki Kimura, On decompositions of a commutative semigroup, K\B{o}dai Math. Sem. Rep. 6 (1954), 109–112. {Volume numbers not printed on issues until Vol. 7 (1955)}. MR 67106 R. Yoshida, Algebraic systems which admit polynomial operations, Mem. Res. Inst. Sci. Engrg. Ritsumeikan Univ. 10 (1963), 1-5. —, On semigroups, Bull. Amer. Math. Soc. 69 (1963), 369-371.
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 259 (1980), 457-469
- MSC: Primary 20M10
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567091-0
- MathSciNet review: 567091