An application of homological algebra to the homotopy classification of two-dimensional CW-complexes
HTML articles powered by AMS MathViewer
- by Micheal N. Dyer
- Trans. Amer. Math. Soc. 259 (1980), 505-514
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567093-4
- PDF | Request permission
Abstract:
Let $\pi$ be ${Z_m} \times {Z_n}$. In this paper the homotopy types of finite connected two dimensional CW-complexes with fundamental group $\pi$ are shown to depend only on the Euler characteristic. The basic method is to study the structure of the group ${\text {Ext}}_{Z\pi }^1(I{\pi ^2}, Z)$ as a principal ${\text {End(}}I{\pi ^2}{\text {)}}$-module.References
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Micheal N. Dyer, Homotopy classification of $(\pi , m)$-complexes, J. Pure Appl. Algebra 7 (1976), no. 3, 249–282. MR 400215, DOI 10.1016/0022-4049(76)90053-0
- Micheal N. Dyer, On the essential height of homotopy trees with finite fundamental group, Compositio Math. 36 (1978), no. 2, 209–224. MR 515046
- P. J. Hilton and U. Stammbach, A course in homological algebra, 2nd ed., Graduate Texts in Mathematics, vol. 4, Springer-Verlag, New York, 1997. MR 1438546, DOI 10.1007/978-1-4419-8566-8
- Allan J. Sieradski, Combinatorial isomorphisms and combinatorial homotopy equivalences, J. Pure Appl. Algebra 7 (1976), no. 1, 59–95. MR 405434, DOI 10.1016/0022-4049(76)90067-0
- Allan J. Sieradski and Micheal N. Dyer, Distinguishing arithmetic for certain stably isomorphic modules, J. Pure Appl. Algebra 15 (1979), no. 2, 199–217. MR 535186, DOI 10.1016/0022-4049(79)90034-3
- Richard G. Swan, $K$-theory of finite groups and orders, Lecture Notes in Mathematics, Vol. 149, Springer-Verlag, Berlin-New York, 1970. MR 0308195, DOI 10.1007/BFb0059150
- Stephen V. Ullom, Nontrivial lower bounds for class groups of integral group rings, Illinois J. Math. 20 (1976), no. 2, 361–371. MR 393214
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 259 (1980), 505-514
- MSC: Primary 55P15; Secondary 57M05, 57M20
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567093-4
- MathSciNet review: 567093