## An application of homological algebra to the homotopy classification of two-dimensional CW-complexes

HTML articles powered by AMS MathViewer

- by Micheal N. Dyer PDF
- Trans. Amer. Math. Soc.
**259**(1980), 505-514 Request permission

## Abstract:

Let $\pi$ be ${Z_m} \times {Z_n}$. In this paper the homotopy types of finite connected two dimensional CW-complexes with fundamental group $\pi$ are shown to depend only on the Euler characteristic. The basic method is to study the structure of the group ${\text {Ext}}_{Z\pi }^1(I{\pi ^2}, Z)$ as a principal ${\text {End(}}I{\pi ^2}{\text {)}}$-module.## References

- Henri Cartan and Samuel Eilenberg,
*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480** - Micheal N. Dyer,
*Homotopy classification of $(\pi , m)$-complexes*, J. Pure Appl. Algebra**7**(1976), no. 3, 249–282. MR**400215**, DOI 10.1016/0022-4049(76)90053-0 - Micheal N. Dyer,
*On the essential height of homotopy trees with finite fundamental group*, Compositio Math.**36**(1978), no. 2, 209–224. MR**515046** - P. J. Hilton and U. Stammbach,
*A course in homological algebra*, 2nd ed., Graduate Texts in Mathematics, vol. 4, Springer-Verlag, New York, 1997. MR**1438546**, DOI 10.1007/978-1-4419-8566-8 - Allan J. Sieradski,
*Combinatorial isomorphisms and combinatorial homotopy equivalences*, J. Pure Appl. Algebra**7**(1976), no. 1, 59–95. MR**405434**, DOI 10.1016/0022-4049(76)90067-0 - Allan J. Sieradski and Micheal N. Dyer,
*Distinguishing arithmetic for certain stably isomorphic modules*, J. Pure Appl. Algebra**15**(1979), no. 2, 199–217. MR**535186**, DOI 10.1016/0022-4049(79)90034-3 - Richard G. Swan,
*$K$-theory of finite groups and orders*, Lecture Notes in Mathematics, Vol. 149, Springer-Verlag, Berlin-New York, 1970. MR**0308195**, DOI 10.1007/BFb0059150 - Stephen V. Ullom,
*Nontrivial lower bounds for class groups of integral group rings*, Illinois J. Math.**20**(1976), no. 2, 361–371. MR**393214**

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**259**(1980), 505-514 - MSC: Primary 55P15; Secondary 57M05, 57M20
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567093-4
- MathSciNet review: 567093