Branched extensions of curves in orientable surfaces
HTML articles powered by AMS MathViewer
- by Cloyd L. Ezell and Morris L. Marx PDF
- Trans. Amer. Math. Soc. 259 (1980), 515-532 Request permission
Abstract:
Given a set of regular curves ${f_1} , \ldots , {f_\rho }$ in an orientable surface N, we are concerned with the existence and structure of all sense-preserving maps $F: M \to N$ where (a) M is a bordered orientable surface with $\rho$ boundary components ${K_1},\ldots , {K_\rho }$, (b) $F|{K_i} = {f_i}, i = 1, \ldots , \rho$, (c) at each interior point of M, there is an integer n such that F is locally topologically equivalent to the complex map $w = {z^n}$.References
- Keith D. Bailey, Extending closed plane curves to immersions of the disk with $n$ handles, Trans. Amer. Math. Soc. 206 (1975), 1–24. MR 370621, DOI 10.1090/S0002-9947-1975-0370621-3 S. J. Blank, Extending immersions of the circle, Dissertation, Brandeis University, 1967; cf. Poenaru, Exposé 342, Séminaire Bourbaki, 1967-1968, Benjamin, New York, 1969.
- D. R. J. Chillingworth, Winding numbers on surfaces. I, Math. Ann. 196 (1972), 218–249. MR 300304, DOI 10.1007/BF01428050
- George K. Francis, Assembling compact Riemann surfaces with given boundary curves and branch points on the sphere, Illinois J. Math. 20 (1976), no. 2, 198–217. MR 402776
- George K. Francis, Polymersions with nontrivial targets, Illinois J. Math. 22 (1978), no. 1, 161–170. MR 463428
- Victor Guillemin and Alan Pollack, Differential topology, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0348781 S. Lefshetz, Topology, Amer. Math. Soc. Colloq. Publ., no. 12, Amer. Math. Soc., Providence, R. I., 1930.
- Morris L. Marx, Extensions of normal immersions of $S^{1}$ into $R^{2}$, Trans. Amer. Math. Soc. 187 (1974), 309–326. MR 341505, DOI 10.1090/S0002-9947-1974-0341505-0
- Morris L. Marx and Roger F. Verhey, Interior and polynomial extensions of immersed circles, Proc. Amer. Math. Soc. 24 (1970), 41–49. MR 252660, DOI 10.1090/S0002-9939-1970-0252660-7
- J. R. Quine, A global theorem for singularities of maps between oriented $2$-manifolds, Trans. Amer. Math. Soc. 236 (1978), 307–314. MR 474378, DOI 10.1090/S0002-9947-1978-0474378-X
- Charles J. Titus, The combinatorial topology of analytic functions on the boundary of a disk, Acta Math. 106 (1961), 45–64. MR 166375, DOI 10.1007/BF02545813
- Charles J. Titus, Extensions through codimension one to sense preserving mappings, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 2, 215–227 (English, with French summary). MR 348770
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 259 (1980), 515-532
- MSC: Primary 57M12; Secondary 30C15
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567094-6
- MathSciNet review: 567094