Quasilinear evolution equations in Banach spaces
HTML articles powered by AMS MathViewer
- by Michael G. Murphy PDF
- Trans. Amer. Math. Soc. 259 (1980), 547-557 Request permission
Abstract:
This paper is concerned with the quasi-linear evolution equation $u’(t) + A(t, u(t))u(t) = 0$ in $[0, T], u(0) = {x_0}$ in a Banach space setting. The spirit of this inquiry follows that of T. Kato and his fundamental results concerning linear evolution equations. We assume that we have a family of semigroup generators that satisfies continuity and stability conditions. A family of approximate solutions to the quasi-linear problem is constructed that converges to a “limit solution.” The limit solution must be the strong solution if one exists. It is enough that a related linear problem has a solution in order that the limit solution be the unique solution of the quasi-linear problem. We show that the limit solution depends on the initial value in a strong way. An application and the existence aspect are also addressed.References
- Paul L. Butzer and Hubert Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York, Inc., New York, 1967. MR 0230022, DOI 10.1007/978-3-642-46066-1
- Paul R. Chernoff and Jerome A. Goldstein, Admissible subspaces and the denseness of the intersection of the domains of semigroup generators, J. Functional Analysis 9 (1972), 460–468. MR 0298465, DOI 10.1016/0022-1236(72)90021-3
- Michael G. Crandall and L. C. Evans, On the relation of the operator $\partial /\partial s+\partial /\partial \tau$ to evolution governed by accretive operators, Israel J. Math. 21 (1975), no. 4, 261–278. MR 390853, DOI 10.1007/BF02757989
- J. R. Dorroh, A class of nonlinear evolution equations in a Banach space, Trans. Amer. Math. Soc. 147 (1970), 65–74. MR 253085, DOI 10.1090/S0002-9947-1970-0253085-5
- J. R. Dorroh, A simplified proof of a theorem of Kato on linear evolution equations, J. Math. Soc. Japan 27 (1975), no. 3, 474–478. MR 380504, DOI 10.2969/jmsj/02730474
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Tosio Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5 (1953), 208–234. MR 58861, DOI 10.2969/jmsj/00520208
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Tosio Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970), 241–258. MR 279626
- Tosio Kato, Linear evolution equations of “hyperbolic” type. II, J. Math. Soc. Japan 25 (1973), 648–666. MR 326483, DOI 10.2969/jmsj/02540648
- Tosio Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Math., Vol. 448, Springer, Berlin, 1975, pp. 25–70. MR 0407477
- Tosio Kato and Hiroki Tanabe, On the abstract evolution equation, Osaka Math. J. 14 (1962), 107–133. MR 140954
- Tosio Kato and Hiroki Tanabe, On the analyticity of solution of evolution equations, Osaka Math. J. 4 (1967), 1–4. MR 222430
- Yoshikazu Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan 27 (1975), no. 4, 640–665. MR 399974, DOI 10.2969/jmsj/02740640
- Yukio K\B{o}mura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan 19 (1967), 493–507. MR 216342, DOI 10.2969/jmsj/01940493
- G. E. Ladas and V. Lakshmikantham, Differential equations in abstract spaces, Mathematics in Science and Engineering, Vol. 85, Academic Press, New York-London, 1972. MR 0460832 P. E. Sobolevskii, Equations of parabolic type in a Banach space, Amer. Math. Soc. Transl. (2) 49 (1966), 1-62.
- Hiroki Tanabe, A class of the equations of evolution in a Banach space, Osaka Math. J. 11 (1959), 121–145. MR 114137
- Hiroki Tanabe, Remarks on the equations of evolution in a Banach space, Osaka Math. J. 12 (1960), 145–166. MR 125454
- Hiroki Tanabe, On the equations of evolution in a Banach space, Osaka Math. J. 12 (1960), 363–376. MR 125455 K. Yosida, Functional analysis, 3rd ed., Springer-Verlag, Berlin, 1971.
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 259 (1980), 547-557
- MSC: Primary 34G20; Secondary 47D05
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567096-X
- MathSciNet review: 567096