QUASI-LINEAR EVOLUTION EQUATIONS IN BANACH SPACES

BY

MICHAEL G. MURPHY

Abstract. This paper is concerned with the quasi-linear evolution equation $u'(t) + A(t, u(t))u(t) = 0$ in $[0, T]$, $u(0) = x_0$ in a Banach space setting. The spirit of this inquiry follows that of T. Kato and his fundamental results concerning linear evolution equations. We assume that we have a family of semigroup generators that satisfies continuity and stability conditions. A family of approximate solutions to the quasi-linear problem is constructed that converges to a "limit solution." The limit solution must be the strong solution if one exists. It is enough that a related linear problem has a solution in order that the limit solution be the unique solution of the quasi-linear problem. We show that the limit solution depends on the initial value in a strong way. An application and the existence aspect are also addressed.

This paper is concerned with the quasi-linear evolution equation

$$u'(t) + A(t, u(t))u(t) = 0 \quad \text{in} [0, T], \quad u(0) = x_0$$

in a Banach space setting.

The spirit of this inquiry follows that of T. Kato. Kato wrote a fundamental paper on linear evolution equations in 1953 [9]; that is, investigation of

$$u'(t) + A(t)u(t) = 0 \quad \text{on} [0, T], \quad u(0) = x_0.$$

After discussing the setting and method of attack, our theorem is stated and proved. We then give an application of the theorem using the Sobolevskii-Tanabe theory of linear evolution equations of parabolic type. A proposition relevant to our theorem is also given.

Let X and Y be Banach spaces, with Y densely and continuously embedded in X. Let $x_0 \in Y$, $T > 0$, $r > r_1 > 0$, $r_2 > 0$, $W = \overline{B}_X(x_0; r)$, $Z = B_X(x_0; r_1) \cap B_Y(x_0; r_2)$, and for each $t \in [0, T]$ and $w \in W$, let $-A(t, w)$ be the infinitesimal generator of a strongly continuous semigroup of bounded linear operators in X, with $Y \subset D(A(t, w))$.

We consider the quasi-linear evolution equation

$$v'(t) + A(t, v(t))v(t) = 0.$$

(QL)
Given a function u from $[0, T']$ into W, where $0 < T' < T$, we can also consider the linearized evolution equation

$$v'(t) + A(t, u(t))v(t) = 0.$$ \[(L; u)\]

By a solution (or strong solution) of (QL) or (L; u) on $[0, T']$, we mean a function v on $[0, T']$ to W which is absolutely continuous (A.e.) and differentiable (A.'e.) a.e., such that $v(t) \in Y$ a.e., ess sup\{$\|v(t)\|_Y\} < \infty$, and v satisfies the appropriate equation, (QL) or (L; u), a.e. on $[0, T']$.

Our method is to produce, for each $x_1 \in Z$, a “limit solution” u with initial value x_1 on an interval $[0, T']$, where $T' \in (0, T]$ is independent of x_1. For a partition $\Delta = \{t_0, t_1, \ldots, t_N\}$ of $[0, T']$, we use an iterative procedure to produce a Lipschitz continuous (A.) function u_Δ which satisfies

$$u_\Delta'(t) + A(t_\Delta(t_i))u_\Delta(t) = 0 \quad \text{for } t \in (t_i, t_{i+1})$$

and $i \in \{0, 1, \ldots, N - 1\}$, with $u_\Delta(0) = x_1$. This u_Δ is shown to be the time-ordered juxtaposition of the semigroups generated by the $-A(t, u_\Delta(t_i))$. These approximate solutions converge uniformly, as $|\Delta|$ goes to 0, to give the limit solution u. We show, in particular, that if $v = w$ is a solution of (QL) or (L; u) on $[0, T']$ with initial value x_1, then $w = u$. Thus, subject to an initial value, a solution of (QL) is unique if it exists, and whenever the linearized equation (L; u) has a solution, then so does the quasi-linear equation (QL). There are known conditions which are sufficient in order that (L; u) has a solution.

Theorem. Assume that

(i) $\{A(t, w)\}$ is stable in X with constants of stability M, β; i.e.,

$$\|(A(t_k, w_k) + \lambda)^{-1}(A(t_{k-1}, w_{k-1}) + \lambda)^{-1} \ldots (A(t_1, w_1) + \lambda)^{-1}\|_X < M(\lambda - \beta)^{-k},$$

$\lambda > \beta$, for any finite family $\{(t_j, w_j)\}$, $0 < t_1 < \ldots < t_k < T$, $k = 1, 2, \ldots$.

(ii) $Y \subset D(A(t, w))$ for each (t, w), which implies that $A(t, w) \in B(Y, X)$, and the map $(t, w) \rightarrow A(t, w)$ is Lipschitz continuous with constant C_1; i.e.,

$$\|A(t_2, w_2) - A(t_1, w_1)\|_{Y,X} < C_1(\|t_2 - t_1\| + \|w_2 - w_1\|_X).$$

(iii) There is a family $\{S(t, w)\}$ of isomorphisms of Y onto X such that $S(t, w)A(t, w)S(t, w)^{-1} = A_1(t, w)$ is the negative of the infinitesimal generator of a strongly continuous semigroup in X for each (t, w), and $A_1(t, w)$ is stable in X, with constants of stability M_1, β_1. Furthermore, there is a constant C_2 such that

$$\|S(t, w)\|_{Y,X} < C_2, \|S(t, w)^{-1}\|_{X,Y} < C_2,$$

and the map $(t, w) \rightarrow S(t, w)$ is Lipschitz continuous with constant C_3 (see (ii) above).

Then, there exists a T', with $0 < T' < T$, such that for each $x_1 \in Z$ and partition $\Delta = \{t_0, t_1, \ldots, t_n\}$ of $[0, T']$, we can find a function u_Δ which is Lipschitz continuous
QUASI-LINEAR EVOLUTION EQUATIONS

\((X) \) on \([0, T']\) to \(W\), \(Y\)-bounded, and satisfies \(u_\Delta'(t) + A(t, u_\Delta(t))u_\Delta(t) = 0 \) for \(t \in (t_i, t_{i+1}) \) and \(i \in \{0, 1, \ldots, n - 1\} \), with \(u_\Delta(0) = x_1 \). In fact, given \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that \(|\Delta| < \delta \) implies that \(\|u_\Delta'(t) + A(t, u_\Delta(t))u_\Delta(t)\|_X < \varepsilon \) except at \(t_1, \ldots, t_n \). Further, the \(u_\Delta \) converge uniformly, as \(|\Delta| \) goes to 0, to a Lipschitz continuous \((X) \) function \(u \) on \([0, T']\) to \(W\) which has initial value \(x_1 \) and is bounded, independent of \(x_1 \), in the relative completion of \(Y \) in \(X \) (the set of all points in \(X \) that are the limit in \(X\)-norm of sequences from \(Y \) that are bounded in \(Y\)-norm).

If \(x_2 \in Z \) and \(u \) is constructed as above but with initial value \(x_2 \), then \(\|u(t) - w(t)\|_X < C\|x_1 - x_2\|_X \) for \(t \in [0, T'] \), with \(C \) independent of \(x_1 \) and \(x_2 \).

Now, if \(v \) is a solution of (QL) or \((L; u)\) on \([0, T'']\), where \(0 < T'' < T' \), with initial value \(x_1 \), then \(v = u \) on \([0, T'']\), and thus solutions to (QL) or \((L; u)\) are uniquely determined by their initial values.

Corollary 1. If \(Y \) is reflexive, then \((L; u)\) has a solution on \([0, T']\) with initial value \(x_1 \), and thus \(u \) is a solution of (QL) on \([0, T']\) with initial value \(x_1 \).

Remarks. (1) If \(D(A(t, w)) = Y \) for each \((t, w)\) and there is a \(\lambda > \beta \) such that

\[
\|\lambda I + A(t, w)\|^{-1}_{Y,X} < C_2 \quad \text{and} \quad \|\lambda I + A(t, w)\|_{Y,X} < C_2 \quad \text{for each} \quad (t, w),
\]

then (iii) is satisfied with \(S(t, w) = \lambda I + A(t, w) \).

(2) If \(Y \) is \(A(t, M>)-\text{admissible} \) \((\exp(-sA(t, w)) \) takes \(y \) to \(y \) and forms a strongly continuous semigroup on \(Y \) \) for each \((t, w)\) and \(A(t, w) \) is stable in \(Y \), then (iii) is unnecessary.

We now begin to prove the Theorem. The proofs of the above remarks and Corollary will be given later.

Let \(T^0 = \min(T, r/\|A\|Me^{\beta T}(\|x_0\|_Y + r_2)) \), where \(\|A\| = \sup\{\|A(t, w)\|_{Y,X}: t \in [0, T], w \in W\} \) which is finite by (ii). Let \(K = C_2C_3M_1T^0 \) and

\[
T' = T^0/(1 + \|A\|C_2^2M_1e^{\kappa + \beta_1T}(\|x_0\|_Y + r_2)).
\]

Lemma A. If \(u \) is Lipschitz continuous \((X)\) on \([0, T']\) to \(W \) with Lipschitz constant

\[
\|A\|C_2^2M_1e^{\kappa + \beta_1T}(\|x_0\|_Y + r_2),
\]

then \((A(t, u(t)): t \in [0, T']) \) is \(Y\)-stable with constants \(C_2^2M_1e^{\kappa} \) and \(\beta_1 \).

Proof of Lemma A. We use Kato's Proposition 4.4 [11] with \(S(t) = S(t, u(t)) \). Then we estimate the variation of \(S \) by

\[
V_S < C_3(1 + \|A\|C_2^2M_1e^{\kappa + \beta_1T}(\|x_0\|_Y + r_2))T' < C_3T^0,
\]

whence \((A(t, u(t))): t \in [0, T'] \) is \(Y\)-stable with constants \(C_2^2M_1e^{\kappa} \) and \(\beta_1 \).

This completes the proof of Lemma A.

By an evolution operator \(\{W(t, s): 0 < s < t < T'\} \) generated by \(\{\triangle(t): t \in [0, T']\} \subset \{A(t, w): t \in [0, T'], w \in W\} \) and a partition \(\Delta = \{t_0, \ldots, t_n\} \) of \([0, T']\), we mean the family of operators obtained by forming a time-ordered juxtaposition of the semigroups generated at the points of the partition; e.g., for \(t \in [t_i, t_{i+1}), s \in [t_j, t_{j+1}], s < t, \)

\[
W(t, s) = \exp(-(t - t_i)\triangle(t_i))\exp(-(t - t_{i-1})\triangle(t_{i-1})) \ldots \exp(-(t_{j+1} - s)\triangle(t_j)).
\]
It follows from (i) and Kato’s Proposition 3.3 [11] that \(\| W(t, s) \|_X < M e^{-\beta(t-s)} \). If \(\{ \tilde{\alpha}(t) \} \) is \(Y \)-stable with constants \(\tilde{M}, \tilde{\beta} \), then \(W(t, s) Y \subset Y \) and \(\| W(t, s) \|_Y < \tilde{M} e^{-\tilde{\beta}(t-s)} \) as a result of (iii) and Kato’s Propositions 2.4 and 3.3 [11]. Let \(\tilde{i} = i \), if \(t \in [t_i, t_{i+1}) \), \(i \neq N \), and \(\tilde{i}_N = t_N \). If \(f(t) = W(t, 0)x_1 \) on \([0, T')\), then \(f \) satisfies \(f'(t) + \tilde{\alpha}(i)f(t) = 0 \) for \(t \in \Delta \), with \(f(0) = x_1 \). The construction of an evolution operator from a family of semigroup generators and a partition, the notation \(\tilde{i} \), and the other results above will be used from this point on without further discussion.

Lemma B. Suppose \(\{ \tilde{\alpha}(t) : t \in [0, T'] \} \) is \(Y \)-stable with constants \(\tilde{M} \) and \(\tilde{\beta} \), and that \(\{ W(t, s) \} \) is generated by \(\{ \tilde{\alpha}(t) \} \) and a partition \(\Delta \) of \([0, T']\). Then, \(f(t) = W(t, 0)x_1 \) is Lipschitz continuous (\(X \)) with Lipschitz constant \(\| \tilde{M} e^{\tilde{\beta}T} \|_Y + r_2 \).

The result is also true if \(\{ W(t, s) \} \) is the evolution operator of Kato’s Theorem 4.1 [11].

Proof of Lemma B. For the partition case, since \(f'(t) = -\tilde{\alpha}(\tilde{i})f(t) \) except for \(t \in \Delta \), we get for \(s < t \)

\[
\| f(t) - f(s) \|_X = \left\| \int_s^t A(\tilde{\xi})f(\xi)d\tilde{\xi} \right\|_X < \| A \| \| f \|_Y |t-s| < \| A \| \tilde{M} e^{\tilde{\beta}T} \|_Y |t-s| < \| A \| \tilde{M} e^{\tilde{\beta}T} \|_Y + r_2 |t-s|.
\]

Now, the \(f \) on \([0, T')\) obtained from Kato’s evolution operator is the uniform (\(X \)) limit of the \(f \) corresponding to the partitions \(\Delta \) as \(|\Delta| \to 0 \). This establishes the result in the second case and completes the proof of Lemma B.

Together, Lemma A and Lemma B suggest an iteration scheme. We fix \(x_1 \) and \(\Delta \), then obtain sequences \(\{ u_n \}, \{ A_n(t) \}, \) and \(\{ U_n(t, s) \} \), with \(A_n(t) = A(t, u_n(t)), \{ U_n(t, s) \} \) the evolution operator generated by \(\{ A_n(t) \} \) and \(\Delta \), and \(u_{n+1}(t) = U_{n+1}(t, 0)x_1 \). Once Lemma A is satisfied, we have \(\{ A_n(t) : t \in [0, T'] \} \) is \(Y \)-stable with constants \(C_2M_1e^K \) and \(\beta_1 \); then, Lemma B applied to \(\{ \tilde{\alpha}(t) \} = \{ A_n(t) \}, \tilde{M} = C_2M_1e^K \) and \(\tilde{\beta} = \beta_1 \), implies that \(u_{n+1} \) is Lipschitz continuous (\(X \)) on \([0, T']\) with Lipschitz constant \(\| A \| C_2M_1e^{K+\beta_1T} \|_Y + r_2 \). Assuming \(u_{n+1}[0, T'] \subset W \), the stage is set to apply Lemma A to \(\{ A_{n+1}(t) : t \in [0, T'] \} \) and continue the process.

We now work with a fixed partition \(\Delta \) of \([0, T']\) and fixed \(x_1 \in Z \).

Let \(A_0(t) = A(t, x_1) \) for \(t \in [0, T'] \) and let \(\{ U_i(t, s) \} \) be the evolution operator generated by \(\{ A_0(t) \} \) and \(\Delta \). Define \(u_1(t) = U_i(t, 0)x_1 \). Then, \(u'_1(t) + A_0(t)u_1(t) = 0 \) except at \(t_1, t_2, \ldots, t_N \). Also,

\[
\| u_1(t) - x_1 \|_X = \| U_1(t, t)x_1 - U_i(t, 0)x_1 \|_X = \left\| \int_0^t U_1(t, s)A_0(s)x_1 ds \right\|_X < M e^{\beta T} \| A \| (\| x_0 \|_Y + r_2)t < r
\]

by the choice of \(T^0 \) and \(T' \). So, \(u_1(t) \in W \) for each \(t \in [0, T'] \). This argument also works for all the following \(u_n, n = 2, 3, \ldots \).
To start the procedure, we apply Lemma A to \(u = x \) and then Lemma B with \(\ell(t) = \{ A_0(t) \} \), \(\tilde{M} = C_2^2 M \), and \(\tilde{\beta} = \beta \), proving that \(u_1 \) is Lipschitz continuous \((X) \) on \([0, T']\) with the Lipschitz constant \(\|A\|C_2^2 M \). For the next iteration, let \(A_1(t) = A(t, u(t)) \) for \(t \in [0, T'] \) and \(\{ U_2(t, s) \} \) be the evolution operator generated by \(\{ A_1(t) \} \) and \(\Delta \). Define \(u_2(t) = U_2(t, 0)x \). Then, \(u_2(t) + A_1(t)u_2(t) = 0 \) except at \(t_1, t_2, \ldots, t_N \). As with \(u_1, u_2 \in W \) for each \(t \in [0, T'] \).

As we commented before, we can continue in like manner. For convenience of notation, let \(M_2 = C_2^2 M \). Then, for \(n \geq 1 \), we have

\[
\| u_{n+1}(t) - u_n(t) \| \leq \left\| \int_0^t U_{n+1}(t, s)(A_n(s) - A_{n-1}(s))U_n(s, 0)ds \right\| X
\leq Me^{\beta T} C_2 M_2 e^{\beta T}(\|x_0\| Y + r_2) \cdot \int_0^t \|u_n(s) - u_{n-1}(s)\| X ds
\leq \left(MM_2 e^{\beta T} C_1(\|x_0\| Y + r_2)\right)^n \cdot \int_0^t \|u_1(s) - x_0\| X ds
\leq \left(MM_2 e^{\beta T} C_1(\|x_0\| Y + r_2)\right)^n \cdot \frac{r}{n!}
\]

which tends to 0 as \(n \to \infty \). Thus \(u(t) = u_\Delta(t), \ u_\Delta'(t) + A_\Delta(t)u_\Delta(t) = 0 \) except at \(t_1, \ldots, t_N \), \(u_\Delta(0) = x \), \(u_\Delta \) is Lipschitz continuous \((X) \) with Lipschitz constant \(\|A\|C_2^2 M \). We now establish that \(\{ u_\Delta; u_\Delta(0) = x \} \) is a family of approximate solutions to (QL) on \([0, T']\) with initial value \(x \). Except for \(t_1, \ldots, t_N \), we have

\[
u_\Delta'(t) + A(t, u_\Delta(t))u_\Delta(t) = u_\Delta'(t) + A(t, u_\Delta(t))u_\Delta(t)
+ (A(t, u_\Delta(t)) - A(t, u_\Delta(t)))u_\Delta(t)
= (A(t, u_\Delta(t)) - A(t, u_\Delta(t)))u_\Delta(t).
\]
So,
\[\| u'_\Delta(t) + A(t, u_\Delta(t))u_\Delta(t) \|_X \]
\[\leq C_1 \left(|t - \tilde{t}| + \| u_\Delta(t) - u_\Delta(\tilde{t}) \|_X \right) M_2 e^{B \ell T} \left(\| x_0 \|_Y + r_2 \right) \]
\[\leq C_1 M_2 e^{B \ell T} (\| x_0 \|_Y + r_2) \cdot \left(1 + M_2 e^{B \ell T} \| A \| (\| x_0 \|_Y + r_2) \right) |t - \tilde{t}| \]
\[= L |t - \tilde{t}|. \]

where \(L \) is independent of \(t \) in \([0, T']\) and \(\Delta \). Thus \(\| u'_\Delta(t) + A(t, u_\Delta(t))u_\Delta(t) \|_X \leq L|\Delta| \) except at \(t_1, t_2, \ldots, t_N \). This verifies that we have a family of approximate solutions.

To show that the \(\{ u_\Delta \} \) converge as \(|\Delta| \to 0 \), let \(\Delta_1 \) and \(\Delta_2 \) be two partitions of \([0, T']\) with \(|\Delta_1| \) and \(|\Delta_2| \) small enough that both \(\| f'(t) + A(t, f(t))f(t) \|_X < \varepsilon \) and \(\| g'(t) + A(t, g(t))g(t) \|_X < \varepsilon \) for \(t \in [0, T'] \setminus (\Delta_1 \cup \Delta_2) \), where \(f(t) = u_{\Delta_1}(t), g(t) = u_{\Delta_2}(t), f(0) = x_1 = g(0), \) and \(\varepsilon > 0 \) is fixed. The preceding paragraph allows us to do this. Let \(\{ V(t, s) \} \) be the evolution operator obtained from Kato's Theorem 4.1 [11] for \(\{ A(t, f(t)): t \in [0, T'] \} \). For \(s, t \in [0, T'] \setminus (\Delta_1 \cup \Delta_2) \), \(s \leq t \), we get
\[g'(s) - f'(s) = (g'(s) + A(s, g(s))g(s)) - (f'(s) + A(s, f(s))f(s)) \]
\[+ A(s, f(s)) (g(s) - f(s)) + (A(s, f(s)) - A(s, g(s)))g(s). \]

Moving the third expression on the right to the left side of the equation and applying \(V(t, s) \), we get
\[V(t, s)(g'(s) - f'(s)) + V(t, s)A(s, f(s))(g(s) - f(s)) \]
\[= V(t, s)(g'(s) + A(s, g(s))g(s)) \]
\[- V(t, s)(f'(s) + A(s, f(s))f(s)) \]
\[+ V(t, s)(A(s, f(s)) - A(s, g(s)))g(s). \]

The left side is simply \(\partial V(t, s)(g(s) - f(s))/\partial s \). Integrating both sides in \(s \) from 0 to \(t \), evaluating the left side at the endpoints, and recognizing that \(V(t, t) = I \), we get
\[g(t) - f(t) - V(t, 0)(x_1 - x_1) \]
\[= \int_0^t V(t, s)(g'(s) + A(s, g(s))g(s)) \, ds \]
\[- \int_0^t V(t, s)(f'(s) + A(s, f(s))f(s)) \, ds \]
\[+ \int_0^t V(t, s)(A(s, f(s)) - A(s, g(s)))g(s) \, ds. \]

So,
\[\| g(t) - f(t) \|_X \leq T'Me^{B \ell T}e + T'Me^{B \ell T}e + Me^{B \ell T}C_1 M_2 e^{B \ell T}(\| x_0 \|_Y + r_2) \]
\[\cdot \int_0^t \| f(s) - g(s) \|_X \, ds \]
\[= L_1 \varepsilon + L_2 \int_0^t \| g(s) - f(s) \|_X \, ds. \]

This implies that
\[\| u_{\Delta_1}(t) - u_{\Delta_2}(t) \|_X = \| g(t) - f(t) \|_X = O(\varepsilon) \]
independent of t in $[0, T']$. Thus, $\{u_\Delta\}$ converges uniformly to a function u on $[0, T']$ to W as $|\Delta| \to 0$. We note that u is Lipschitz continuous (X) with constant $\|u\|C_1^2M_1e^{K+\beta T}(\|x_0\|_Y + r_2)$, $u(0) = x_1$, and u is bounded, independent of x_1, by $C_2^2M_1e^{K+\beta T}(\|x_0\|_Y + r_2)$ in the relative completion of Y in X.

We need to know that u "corresponds" to $\{A(t, u(t)) : t \in [0, T']\}$. Let $\{U(t, s)\}$ be the evolution operator obtained from Kato's Theorem 4.1 [11] for $\{A(t, u(t))\}$, and define $\bar{u}(t) = U(t, 0)x_1$. By Lemma A, $\{A(t, u(t))\}$ is Y-stable with constants M_2 and β_1. For any partition Δ of $[0, T']$ we have

$$\|\bar{u}(t) - u_\Delta(t)\|_X = \|U(t, 0)x_1 - U_\Delta(t, 0)x_1\|_X$$

$$\leq \left| \int_0^t U(t, s)(A(s, u(s)) - A_\Delta(s))U_\Delta(s, 0)x_1 ds \right|$$

$$\leq M_2e^{\beta T}C_1(|\Delta| + \sup\|u(s) - u_\Delta(s)\| : s \in [0, t])$$

$$\cdot M_2e^{\beta T}(\|x_0\|_Y + r_2).$$

Since u_Δ converges to u uniformly on $[0, T']$ as $|\Delta| \to 0$, and u_Δ is Lipschitz continuous (X) with a Lipschitz constant that is independent of Δ, we see that $\|\bar{u}(t) - u_\Delta(t)\|_X$ goes to $\|\bar{u}(t) - u(t)\|_X$ and to 0 as $|\Delta| \to 0$. Thus $u(t) = \bar{u}(t) = U(t, 0)x_1$.

Suppose $x_2 \in Z$ and that w_Δ and w are obtained in the same manner as u_Δ and u, except that the initial value for w_Δ and w is x_2. Analogous to the technique employed to obtain u_Δ and u, we get

$$\frac{d}{ds} U_\Delta(t, s)(u_\Delta(s) - w_\Delta(s)) = U_\Delta(t, s)(A(s, w_\Delta(s)) - A(s, u_\Delta(s)))w_\Delta(s)$$

for $s, t \in [0, T']$, $s < t$, $s \notin \Delta$. Integrating both sides in s from 0 to t yields

$$u_\Delta(t) - w_\Delta(t) - U_\Delta(t, 0)(x_1 - x_2)$$

$$= \int_0^t U_\Delta(t, s)(A(s, w_\Delta(s)) - A(s, u_\Delta(s)))w_\Delta(s) ds,$$

and so

$$\|u_\Delta(t) - w_\Delta(t)\|_X < M_2e^{\beta T}\|x_1 - x_2\|_X + M_2e^{\beta T}C_1M_2e^{\beta T}(\|x_0\|_Y + r_2)$$

$$\cdot \int_0^t \|u_\Delta(s) - w_\Delta(s)\|_X ds.$$

Thus, $\|u_\Delta(t) - w_\Delta(t)\|_X < C\|x_1 - x_2\|_X$, with C independent of t in $[0, T']$, Δ, and x_1 and x_2. It follows that $\|u(t) - w(t)\|_X < C\|x_1 - x_2\|_X$ for $t \in [0, T']$, with C also independent of the initial values.

We now turn to the uniqueness of solutions to (QL) or (L; u) on $[0, T'']$, where $0 < T'' < T'$, with initial value $x_1 \in Z$.

Suppose v is such a solution to (L; u). Then, $v'(s) + A(s, u(s))v(s) = 0$ a.e., so

$$\frac{d}{ds} U(t, s)v(s) = U(t, s)v'(s) + U(t, s)A(s, u(s))v(s) = 0 \quad \text{a.e.}$$

Integrating in s from 0 to t, we get

$$U(t, t)v(t) - U(t, 0)v(0) = v(t) - U(t, 0)x_1 = v(t) - u(t) = \text{constant}.$$
value x_1. In fact, this also makes u a solution of (QL). We note that it is not necessary that $v([0, T]) \subset W$.

Now suppose that v is a solution to (QL) on $[0, T]$ with initial value x_1. Then,
\[v'(s) + A(s, v(s))v(s) = 0 \text{ a.e.}, \]
and so
\[v'(s) + A(s, u(s))v(s) = (A(s, u(s)) - A(s, v(s)))v(s) \text{ a.e.} \]
Thus,
\[\frac{\partial}{\partial s} U(t, s)v(s) = U(t, s)v'(s) + U(t, s)A(s, u(s))v(s) \text{ a.e.} \]
Integrating in s from 0 to t, we get
\[v(t) - u(t) = U(t, t)v(t) - U(t, 0)v(0) \]
\[= \int_0^t U(t, s)(A(s, u(s)) - A(s, v(s)))v(s) \, ds. \]
This implies that
\[\|v(t) - u(t)\|_X \leq M\epsilon^{\theta T}\|v\| \gamma C_1 \int_0^t \|u(s) - v(s)\|_X \, ds, \]
and thus $\|v(t) - u(t)\|_X = 0$ for all t in $[0, T]$. This makes u the unique solution of (QL) on $[0, T]$ with initial value x_1. This completes the proof of our Theorem. \Box

If Y is reflexive, then by Kato's Theorem 5.1 [11], we have the result that $v = u$ is a solution of $(L; u)$ on $[0, T]$ with initial value x_1, and thus u is a solution of (QL). This gives us Corollary 1. \Box

The remarks following the statement of the Theorem and Corollary are straightforward. We also note that Remark (1) deals with a particular case of condition (iii) of the theorem. Remark (2) contains a condition which greatly simplifies the proof of the Theorem, but which would be extremely difficult to verify in the absence of conditions stronger than condition (iii); e.g., see [2].

We now turn our attention to an application of our Theorem using the Sobolevskii-Tanabe theory of linear evolution equations of parabolic type.

Corollary 2. Let S be the sector of the complex plane C consisting of 0 and \(\{\lambda \in C: -\theta < \arg \lambda < \theta \} \), where $\theta \in (\pi/2, \pi)$ is fixed. We assume that conditions (i) and (ii) of the Theorem hold with $Y = D(A(t, w))$ for each t, w, and that

(iii)’ the resolvent set of $-A(t, w)$ contains S and
\[\| (\lambda I + A(t, w))^{-1} \|_X \leq C_4/ (1 + |\lambda|) \]

for each $\lambda \in S$, $t \in [0, T]$, and $w \in W$, where C_4 is a constant independent of $\lambda, t, \text{ and } w$.

Then, the conclusion of the Theorem holds and $(L; u)$ has a continuously differentiable (X) solution on $[0, T']$ with initial value x_1, and thus u is a continuously differentiable (X) solution of (QL) on $[0, T']$ with initial value x_1.

Proof. Under these conditions the hypotheses of the Theorem hold, where $S(t, w) = A(t, w)$ for each t and w. This gives us the limit solution u. The plan of attack is to produce a solution to $(L; u)$ which is continuously differentiable (X) on
[0, T'] and has initial value \(x_1 \). This is where the Sobolevskii-Tanabe theory enters. Let \(A(t) = A(t, u(t)) \) for each \(t \in [0, T] \), and we see for \(t_1, t_2, t_3 \in [0, T] \) that

\[
\| (A(t_1) - A(t_2))A(t_3)^{-1} \|_X < \| A(t_1) - A(t_2) \|_{Y,X} \| A(t_3)^{-1} \|_{X,Y} < C_4 \| A(t_1, u(t_1)) - A(t_2, u(t_2)) \|_{Y,X} < C_5|t_2 - t_1| \quad \text{by (ii)}
\]

and the Lipschitz continuity of \(u \), where \(C_5 \) is independent of the choice of \(t_1, t_2, t_3 \). It follows from the Sobolevskii-Tanabe theory [14], [15], [19], [20], [21], [22] that there is an evolution operator \(\{ V(t, s) : 0 < s < t < T' \} \) such that \(v(t) = V(t, 0)x_1 \) defines a continuously differentiable \((X)\) function that satisfies \(v'(t) + A(t)v(t) = 0 \), \(v(0) = x_1 \). The operator also satisfies \(\| A(t)V(t, 0)A(0)^{-1} \|_X < C_6 \) on \([0, T']\), with \(C_6 \) independent of \(t \) [19, p. 5], thus

\[
\| v(t) \|_Y = \| V(t, 0)x_1 \|_Y = \| A(t)^{-1}A(i)V(t, 0)A(0)^{-1}A(0)x_1 \|_Y < \| A(t)^{-1} \|_{X,Y} \| A(t)V(t, 0)A(0)^{-1}X \|_X \| A(0) \|_{Y,X} \| x_1 \|_Y < C_7\| x_1 \|_Y,
\]

where \(C_7 \) is independent of \(t \). So, except for the image of \(v \) lying in \(W \), we have that \(v \) is a solution of \((L; u)\). Since the proof of the uniqueness of a solution to \((L; u)\) does not depend on \(v([0, T']) \subset W \), we still have that \(v(t) = u(t) \) on \([0, T']\). Consequently, \(u \) is the solution of \((QL)\) on \([0, T']\) with initial value \(x_1 \). In fact, \(u \) is continuously differentiable \((X)\), without exception, on \([0, T']\). □

We note that in general an application of the Theorem involves finding conditions that guarantee the existence of a solution to \((L; u)\), which then implies that \(u \) is the solution of \((QL)\).

It may be difficult at times to recognize that the conditions for our Theorem hold. The following Proposition gives criteria that obtain the Banach space \(Y \) and verify most of condition (iii) of the Theorem. If, in particular, we are able to use \(\lambda I + A(t, w) \), where \(\lambda > \beta \) is fixed, for \(S(t, w) \) in the Proposition, then condition (ii) of the Theorem holds as well as all of condition (iii).

Proposition. Let \(Y \) be a dense linear subspace of \(X \). Suppose for each \(t \in [0, T] \) and \(w \in W \) that \(S(t, w) \) is an isomorphism (algebraically) from \(Y \) onto \(X \), \(S(t, w) \) is a closed operator in \(X \), \(S(t, w)^{-1} \in B(X) \) with \(\| S(t, w)^{-1} \|_X < L_1 \), and the bounded linear operator \(S(t, w)S(t_0, w_0)^{-1} \) satisfies

\[
\| S(t_2, w_2)S(t_0, w_0)^{-1} - S(t_1, w_1)S(t_0, w_0)^{-1} \|_X < L_2(|t_2 - t_1| + \| w_2 - w_1 \|_X),
\]

where \(L_1, L_2, t_0 \) from \([0, T]\), and \(w_0 \in W \) are fixed. Suppose further that \(Y \) has the graph norm induced by \(S(t_0, w_0) \); i.e., for \(y \in Y \), \(\| y \|_Y = \| y \|_X + \| S(t_0, w_0)y \|_X \). Then,

(i) \(Y \) is a Banach space under this norm, and \(Y \) is continuously embedded in \(X \).

(ii) \(S(t, w)^{-1} \in B(X, Y) \) for each \(t \) and \(w \), and \(\| S(t, w)^{-1} \|_{X,Y} < 1 + L_1 + L_2(T + 2r) \), where \(r \) is the radius of the ball \(W \).

(iii) \(S(t, w) \in B(Y, X) \) for each \(t \) and \(w \), and \(\| S(t, w) \|_{Y,X} < 1 + L_2(T + 2r) = L_3 \).

(iv) \(\| S(t_2, w_2) - S(t_1, w_1) \|_{Y,X} < L_2L_3(|t_2 - t_1| + \| w_2 - w_1 \|_X) \).
Proof. Since $S(t_0, w_0)$ is a closed linear operator with domain Y, it is clear that Y is a Banach space under the indicated norm. It is also immediate that Y is continuously embedded in X.

Let $x \in X$, then

$$
\|S(t, w)^{-1}x\|_Y = \|S(t, w)^{-1}x\|_X + \|S(t_0, w_0)S(t, w)^{-1}x\|_X \\
\leq L_1\|x\|_X + \|S(t_0, w_0)S(t, w)^{-1}x\|_X + \|x\|_X \\
\leq (L_1 + 1)\|x\|_X + L_2(|t - t_0| + \|w - w_0\|_X)\|x\|_X \\
\leq (L_1 + 1)\|x\|_X + L_2(T + 2r)\|x\|_X \\
= (1 + L_1 + L_2(T + 2r))\|x\|_X.
$$

So, $S(t, w)^{-1} \in B(X, Y)$ and $\|S(t, w)^{-1}\|_{X,Y} < 1 + L_1 + L_2(T + 2r)$.

Let $y \in Y$, then

$$
\|S(t, w)y\|_X = \|S(t, w)S(t_0, w_0)^{-1}S(t_0, w_0)y\|_X \\
\leq (1 + L_2(|t - t_0| + \|w - w_0\|_X)) \cdot \|S(t_0, w_0)y\|_X \\
\leq (1 + L_2(T + 2r))\|y\|_Y - \|y\|_X \\
\leq (1 + L_2(T + 2r))\|y\|_Y.
$$

So, $S(t, w) \in B(Y, X)$ and $\|S(t, w)\|_{Y,X} < 1 + L_2(T + 2r)$.

To show (iv), let $y \in Y$, then

$$
\|S(t_2, w_2)y - S(t_1, w_1)y\|_X = \|(S(t_2, w_2) - S(t_1, w_1))S(t_0, w_0)^{-1}S(t_0, w_0)y\|_X \\
\leq \|(S(t_2, w_2) - S(t_1, w_1))S(t_0, w_0)^{-1}\|_X \cdot \|S(t_0, w_0)y\|_Y \\
\leq L_2(|t_2 - t_1| + \|w_2 - w_1\|_X) \cdot \|S(t_0, w_0)\|_{Y,X}\|y\|_Y \\
\leq L_2L_3(|t_2 - t_1| + \|w_2 - w_1\|_X)\|y\|_Y.
$$

We also note that condition (i) for our Theorem holds when each $A(t, w)$ satisfies $\|\exp(-sA(t, w))\|_X < e^{Bt}$.

References

3. M. G. Crandall and L. C. Evans, On the relation of the operator $\partial / \partial s + \partial / \partial t$ to evolution governed by accretive operators, Israel J. Math. 21 (1975), 261–278.

Department of Mathematics, Boise State University, Boise, Idaho 83725