Quasilinear evolution equations in Banach spaces

Author:
Michael G. Murphy

Journal:
Trans. Amer. Math. Soc. **259** (1980), 547-557

MSC:
Primary 34G20; Secondary 47D05

DOI:
https://doi.org/10.1090/S0002-9947-1980-0567096-X

MathSciNet review:
567096

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the quasi-linear evolution equation in in a Banach space setting. The spirit of this inquiry follows that of T. Kato and his fundamental results concerning linear evolution equations. We assume that we have a family of semigroup generators that satisfies continuity and stability conditions. A family of approximate solutions to the quasi-linear problem is constructed that converges to a ``limit solution.'' The limit solution must be the strong solution if one exists. It is enough that a related linear problem has a solution in order that the limit solution be the unique solution of the quasi-linear problem. We show that the limit solution depends on the initial value in a strong way. An application and the existence aspect are also addressed.

**[1]**Paul L. Butzer and Hubert Berens,*Semi-groups of operators and approximation*, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York Inc., New York, 1967. MR**0230022****[2]**Paul R. Chernoff and Jerome A. Goldstein,*Admissible subspaces and the denseness of the intersection of the domains of semigroup generators*, J. Functional Analysis**9**(1972), 460–468. MR**0298465**, https://doi.org/10.1016/0022-1236(72)90021-3**[3]**Michael G. Crandall and L. C. Evans,*On the relation of the operator ∂/∂𝑠+∂/∂𝜏 to evolution governed by accretive operators*, Israel J. Math.**21**(1975), no. 4, 261–278. MR**390853**, https://doi.org/10.1007/BF02757989**[4]**J. R. Dorroh,*A class of nonlinear evolution equations in a Banach space*, Trans. Amer. Math. Soc.**147**(1970), 65–74. MR**253085**, https://doi.org/10.1090/S0002-9947-1970-0253085-5**[5]**J. R. Dorroh,*A simplified proof of a theorem of Kato on linear evolution equations*, J. Math. Soc. Japan**27**(1975), no. 3, 474–478. MR**380504**, https://doi.org/10.2969/jmsj/02730474**[6]**Nelson Dunford and Jacob T. Schwartz,*Linear operators. Part I*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR**1009162****[7]**Avner Friedman,*Partial differential equations*, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR**0445088****[8]**Einar Hille and Ralph S. Phillips,*Functional analysis and semi-groups*, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR**0089373****[9]**Tosio Kato,*Integration of the equation of evolution in a Banach space*, J. Math. Soc. Japan**5**(1953), 208–234. MR**58861**, https://doi.org/10.2969/jmsj/00520208**[10]**Tosio Kato,*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473****[11]**Tosio Kato,*Linear evolution equations of “hyperbolic” type*, J. Fac. Sci. Univ. Tokyo Sect. I**17**(1970), 241–258. MR**279626****[12]**Tosio Kato,*Linear evolution equations of “hyperbolic” type. II*, J. Math. Soc. Japan**25**(1973), 648–666. MR**326483**, https://doi.org/10.2969/jmsj/02540648**[13]**Tosio Kato,*Quasi-linear equations of evolution, with applications to partial differential equations*, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Springer, Berlin, 1975, pp. 25–70. Lecture Notes in Math., Vol. 448. MR**0407477****[14]**Tosio Kato and Hiroki Tanabe,*On the abstract evolution equation*, Osaka Math. J.**14**(1962), 107–133. MR**140954****[15]**Tosio Kato and Hiroki Tanabe,*On the analyticity of solution of evolution equations*, Osaka Math. J.**4**(1967), 1–4. MR**222430****[16]**Yoshikazu Kobayashi,*Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups*, J. Math. Soc. Japan**27**(1975), no. 4, 640–665. MR**399974**, https://doi.org/10.2969/jmsj/02740640**[17]**Yukio K\B{o}mura,*Nonlinear semi-groups in Hilbert space*, J. Math. Soc. Japan**19**(1967), 493–507. MR**216342**, https://doi.org/10.2969/jmsj/01940493**[18]**G. E. Ladas and V. Lakshmikantham,*Differential equations in abstract spaces*, Academic Press, New York-London, 1972. Mathematics in Science and Engineering, Vol. 85. MR**0460832****[19]**P. E. Sobolevskii,*Equations of parabolic type in a Banach space*, Amer. Math. Soc. Transl. (2)**49**(1966), 1-62.**[20]**Hiroki Tanabe,*A class of the equations of evolution in a Banach space*, Osaka Math. J.**11**(1959), 121–145. MR**114137****[21]**Hiroki Tanabe,*Remarks on the equations of evolution in a Banach space*, Osaka Math. J.**12**(1960), 145–166. MR**125454****[22]**Hiroki Tanabe,*On the equations of evolution in a Banach space*, Osaka Math. J.**12**(1960), 363–376. MR**125455****[23]**K. Yosida,*Functional analysis*, 3rd ed., Springer-Verlag, Berlin, 1971.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34G20,
47D05

Retrieve articles in all journals with MSC: 34G20, 47D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1980-0567096-X

Keywords:
Quasi-linear evolution equations,
Banach space,
evolution operator,
strongly continuous semigroup

Article copyright:
© Copyright 1980
American Mathematical Society