Approximately finite-dimensional $C^{\ast }$-algebras and Bratteli diagrams
HTML articles powered by AMS MathViewer
- by A. J. Lazar and D. C. Taylor PDF
- Trans. Amer. Math. Soc. 259 (1980), 599-619 Request permission
Abstract:
We determine properties of an AF algebra by observing the characteristics of its diagram. In particular, we characterize AF algebras that are liminal, postliminal, antiliminal and with continuous trace; moreover, we characterize liminal AF algebras with Hausdorff spectrum. Some elementary examples of AF algebras with certain desired properties are constructed by using these characterizations.References
- Ola Bratteli, Inductive limits of finite dimensional $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–234. MR 312282, DOI 10.1090/S0002-9947-1972-0312282-2
- Ola Bratteli and George A. Elliott, Structure spaces of approximately finite-dimensional $C^{\ast }$-algebras. II, J. Functional Analysis 30 (1978), no. 1, 74–82. MR 513479, DOI 10.1016/0022-1236(78)90056-3
- Jacques Dixmier, Sur les $C^{\ast }$-algèbres, Bull. Soc. Math. France 88 (1960), 95–112 (French). MR 121674, DOI 10.24033/bsmf.1545 —, $C^{\ast }$-algebras, North-Holland, Amsterdam; American Elsevier, New York, 1977.
- James G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318–340. MR 112057, DOI 10.1090/S0002-9947-1960-0112057-5 —, Type I $C^{\ast }$-algebras, Amer. J. Math. 73 (1961), 572-612.
- Philip Green, Minimal primitive ideals of GCR $C^{\ast }$-algebras, Proc. Amer. Math. Soc. 73 (1979), no. 2, 209–210. MR 516466, DOI 10.1090/S0002-9939-1979-0516466-1
- Alain Guichardet, Caractères des algèbres de Banach involutives, Ann. Inst. Fourier (Grenoble) 13 (1963), 1–81 (French). MR 147925, DOI 10.5802/aif.130
- Gert Kjaergȧrd Pedersen, Measure theory for $C^{\ast }$ algebras, Math. Scand. 19 (1966), 131–145. MR 212582, DOI 10.7146/math.scand.a-10802
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 259 (1980), 599-619
- MSC: Primary 46L05; Secondary 46L35
- DOI: https://doi.org/10.1090/S0002-9947-1980-0567100-9
- MathSciNet review: 567100