On linear algebraic semigroups. II
HTML articles powered by AMS MathViewer
- by Mohan S. Putcha PDF
- Trans. Amer. Math. Soc. 259 (1980), 471-491 Request permission
Abstract:
We continue from [11] the study of linear algebraic semigroups. Let S be a connected algebraic semigroup defined over an algebraically closed field K. Let $\mathcal {U}(S)$ be the partially ordered set of regular $\mathcal {J}$-classes of S and let $E(S)$ be the set of idempotents of S. The following theorems (among others) are proved. (1) $\mathcal {U}(S)$ is a finite lattice. (2) If S is regular and the kernel of S is a group, then the maximal semilattice image of S is isomorphic to the center of $E(S)$. (3) If S is a Clifford semigroup and $f \in E(S)$, then the set $\{ e | e \in E(S), e \geqslant f\}$ is finite. (4) If S is a Clifford semigroup, then there is a commutative connected closed Clifford subsemigroup T of S with zero such that T intersects each $\mathcal {J}$-class of S. (5) If S is a Clifford semigroup with zero, then S is commutative and is in fact embeddable in $({K^n}, \cdot )$ for some $n \in {\textbf {Z}^ + }$. (6) If ${\text {ch}} \cdot K = 0$ and S is a commutative Clifford semigroup, then S is isomorphic to a direct product of an abelian connected unipotent group and a closed connected subsemigroup of $({K^n}, \cdot )$ for some $n \in {\textbf {Z}^ + }$. (7) If S is a regular semigroup and ${\text {dim}} \cdot S \leqslant 2$, then $\left | {\mathcal {U}(S)} \right | \leqslant 4$. (8) If S is a Clifford semigroup with zero and ${\text {dim}} \cdot S = 3$, then $\left | {E(S)} \right | = \left | {\mathcal {U}(S)} \right |$ can be any even number $\geqslant 8$. (9) If S is a Clifford semigroup then $\mathcal {U}(S)$ is a relatively complemented lattice and all maximal chains in $\mathcal {U}(S)$ have the same number of elements.References
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- A. H. Clifford, Semigroups admitting relative inverses, Ann. of Math. (2) 42 (1941), 1037–1049. MR 5744, DOI 10.2307/1968781
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791 P. Crawley and R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Englewood Cliffs, N. J., 1973.
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656 M. P. Drazin, Natural structures on rings and semigroups with involution (to appear).
- T. E. Hall, The partially ordered set of all $J$-classes of a finite semigroup, Semigroup Forum 6 (1973), no. 3, 263–264. MR 393301, DOI 10.1007/BF02389131
- Kenneth Hoffman and Ray Kunze, Linear algebra, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0276251
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
- W. D. Munn, Pseudo-inverses in semigroups, Proc. Cambridge Philos. Soc. 57 (1961), 247–250. MR 121410, DOI 10.1017/s0305004100035143
- Mohan S. Putcha, On linear algebraic semigroups. I, II, Trans. Amer. Math. Soc. 259 (1980), no. 2, 457–469, 471–491. MR 567091, DOI 10.1090/S0002-9947-1980-0567091-0 J. Rhodes, Problems 23-28, Semigroup Forum 5 (1972), 92-94.
- I. R. Shafarevich, Basic algebraic geometry, Die Grundlehren der mathematischen Wissenschaften, Band 213, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch. MR 0366917, DOI 10.1007/978-3-642-96200-4
- Takayuki Tamura, The theory of construction of finite semigroups. I, Osaka Math. J. 8 (1956), 243–261. MR 83497
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 259 (1980), 471-491
- MSC: Primary 20M10
- DOI: https://doi.org/10.1090/S0002-9947-80-99945-6