Homological algebra on a complete intersection, with an application to group representations
HTML articles powered by AMS MathViewer
- by David Eisenbud
- Trans. Amer. Math. Soc. 260 (1980), 35-64
- DOI: https://doi.org/10.1090/S0002-9947-1980-0570778-7
- PDF | Request permission
Abstract:
Let R be a regular local ring, and let $A = R/(x)$, where x is any nonunit of R. We prove that every minimal free resolution of a finitely generated A-module becomes periodic of period 1 or 2 after at most $\operatorname {dim} A$ steps, and we examine generalizations and extensions of this for complete intersections. Our theorems follow from the properties of certain universally defined endomorphisms of complexes over such rings.References
- J. Alperin, Resolutions for finite groups, Internat. Sympos. on Theory of Finite Groups (Sapporo, Japan, 1974).
- J. L. Alperin, Periodicity in groups, Illinois J. Math. 21 (1977), no. 4, 776–783. MR 450381
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- N. Bourbaki, Éléments de mathématique. Algèbre. Chapitres 1 à 3, Hermann, Paris, 1970 (French). MR 0274237
- David A. Buchsbaum and David Eisenbud, Lifting modules and a theorem on finite free resolutions, Ring theory (Proc. Conf., Park City, Utah, 1971) Academic Press, New York, 1972, pp. 63–74. MR 0340343 —, Algebra structures on resolutions, and some structure theorems for ideals of height 3, Amer. J. Math. (1977). —, Generic free resolutions and a family of generically perfect ideals, Advances in Math. (1976).
- David A. Buchsbaum and David Eisenbud, What annihilates a module?, J. Algebra 47 (1977), no. 2, 231–243. MR 476736, DOI 10.1016/0021-8693(77)90223-X
- Jon F. Carlson, The dimensions of periodic modules over modular group algebras, Illinois J. Math. 23 (1979), no. 2, 295–306. MR 528565
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- Leonard Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224–239. MR 137742, DOI 10.1090/S0002-9947-1961-0137742-1
- Tor Holtedahl Gulliksen, A proof of the existence of minimal $R$-algebra resolutions, Acta Math. 120 (1968), 53–58. MR 224607, DOI 10.1007/BF02394606
- Tor H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167–183. MR 364232, DOI 10.7146/math.scand.a-11518
- Tor H. Gulliksen and Gerson Levin, Homology of local rings, Queen’s Papers in Pure and Applied Mathematics, No. 20, Queen’s University, Kingston, Ont., 1969. MR 0262227
- Irving Kaplansky, Commutative rings, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0345945
- G. Levin and W. V. Vasconcelos, Homological dimensions and Macaulay rings, Pacific J. Math. 25 (1968), 315–323. MR 230715
- Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911 V. Mehta, Thesis, University of California, Berkeley, Calif., 1976.
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Hans-Joachim Nastold, Zur Serreschen Multiplizitätstheorie in der arithmetischen Geometrie, Math. Ann. 143 (1961), 333–343 (German). MR 125858, DOI 10.1007/BF01470614 J. P. Serre, Algèbre local-multiplicité, 3rd ed., Lecture Notes in Math., vol. 11, Springer-Verlag, New York, 1975.
- Jack Shamash, The Poincaré series of a local ring, J. Algebra 12 (1969), 453–470. MR 241411, DOI 10.1016/0021-8693(69)90023-4
- John Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14–27. MR 86072
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 260 (1980), 35-64
- MSC: Primary 13D25; Secondary 13H10, 14M10, 18G10, 20C20
- DOI: https://doi.org/10.1090/S0002-9947-1980-0570778-7
- MathSciNet review: 570778