Harmonically induced representations on nilpotent Lie groups and automorphic forms on nilmanifolds
HTML articles powered by AMS MathViewer
- by Richard C. Penney
- Trans. Amer. Math. Soc. 260 (1980), 123-145
- DOI: https://doi.org/10.1090/S0002-9947-1980-0570782-9
- PDF | Request permission
Abstract:
It is shown that the irreducible “discrete series” representations of certain nilpotent Lie groups may be realized in square integrable $\bar \partial$ cohomology spaces. This theory is applied to obtain a concept of automorphic forms on nilmanifolds which generalizes the niltheta functions of Cartier and Auslander-Tolimieri. We also use the automorphic cohomology to solve certain holomorphic difference equations on ${{\textbf {C}}^n}$.References
- Louis Auslander and Richard Tolimieri, Abelian harmonic analysis, theta functions and function algebras on a nilmanifold, Lecture Notes in Mathematics, Vol. 436, Springer-Verlag, Berlin-New York, 1975. MR 0414785
- Robert J. Blattner, On induced representations, Amer. J. Math. 83 (1961), 79–98. MR 125456, DOI 10.2307/2372722
- J. Carmona, Représentations du groupe de Heisenberg dans les espaces de $(0,\,q)$-formes, Math. Ann. 205 (1973), 89–112 (French). MR 342643, DOI 10.1007/BF01350840
- Pierre Cartier, Quantum mechanical commutation relations and theta functions, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 361–383. MR 0216825
- Lawrence Corwin, Frederick P. Greenleaf, and Richard Penney, A general character formula for irreducible projections on $L^{2}$ of a nilmanifold, Math. Ann. 225 (1977), no. 1, 21–32. MR 425021, DOI 10.1007/BF01364889
- Roe W. Goodman, One-parameter groups generated by operators in an enveloping algebra. , J. Functional Analysis 6 (1970), 218–236. MR 0268330, DOI 10.1016/0022-1236(70)90059-5
- H. Grauert and K. Fritzsche, Several complex variables, Graduate Texts in Mathematics, Vol. 38, Springer-Verlag, New York-Heidelberg, 1976. Translated from the German. MR 0414912
- G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. (2) 57 (1953), 591–603. MR 54581, DOI 10.2307/1969740
- Lars Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555–568. MR 124734, DOI 10.1007/BF02589517
- Roger Howe, On Frobenius reciprocity for unipotent algebraic groups over $Q$, Amer. J. Math. 93 (1971), 163–172. MR 281842, DOI 10.2307/2373455
- Roger E. Howe, On a connection between nilpotent groups and oscillatory integrals associated to singularities, Pacific J. Math. 73 (1977), no. 2, 329–363. MR 578891
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001
- Calvin C. Moore and Joseph A. Wolf, Square integrable representations of nilpotent groups, Trans. Amer. Math. Soc. 185 (1973), 445–462 (1974). MR 338267, DOI 10.1090/S0002-9947-1973-0338267-9
- Henri Moscovici and Andrei Verona, Harmonically induced representations of nilpotent Lie groups, Invent. Math. 48 (1978), no. 1, 61–73. MR 508089, DOI 10.1007/BF01390062
- Henri Moscovici, A vanishing theorem for $L^{2}$-cohomology in the nilpotent case, Noncommutative harmonic analysis (Proc. Third Colloq., Marseille-Luminy, 1978) Lecture Notes in Math., vol. 728, Springer, Berlin, 1979, pp. 201–210. MR 548331
- Edward Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572–615. MR 107176, DOI 10.2307/1970331 R. Penney, The structure of ad-associative Lie algebras, Pacific J. Math. (submitted). —, A Fourier transform theorem for nilmanifolds and nil-theta functions, Pacific J. Math. (submitted).
- Neils Skovhus Poulsen, On $C^{\infty }$-vectors and intertwining bilinear forms for representations of Lie groups, J. Functional Analysis 9 (1972), 87–120. MR 0310137, DOI 10.1016/0022-1236(72)90016-x
- Leonard F. Richardson, Decomposition of the $L^{2}$-space of a general compact nilmanifold, Amer. J. Math. 93 (1971), 173–190. MR 284546, DOI 10.2307/2373456
- I. Satake, Unitary representations of a semi-direct product of Lie groups on $\bar \partial$-cohomology spaces, Math. Ann. 190 (1970/71), 177–202. MR 296213, DOI 10.1007/BF01433209
- Wilfried Schmid, $L^{2}$-cohomology and the discrete series, Ann. of Math. (2) 103 (1976), no. 2, 375–394. MR 396856, DOI 10.2307/1970944
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 260 (1980), 123-145
- MSC: Primary 22E27; Secondary 14K25, 43A85
- DOI: https://doi.org/10.1090/S0002-9947-1980-0570782-9
- MathSciNet review: 570782