Distinguished subfields
HTML articles powered by AMS MathViewer
- by James K. Deveney and John N. Mordeson
- Trans. Amer. Math. Soc. 260 (1980), 185-193
- DOI: https://doi.org/10.1090/S0002-9947-1980-0570785-4
- PDF | Request permission
Abstract:
Let L be a finitely generated nonalgebraic extension of a field K of characteristic $p \ne 0$. A maximal separable extension D of K in L is distinguished if $L \subseteq {K^{{p^{ - n}}}}(D)$ for some n. Let d be the transcendence degree of L over K. If every maximal separable extension of K in L is distinguished, then every set of d relatively p-independent elements is a separating transcendence basis for a distinguished subfield. Conversely, if $K({L^p})$ is separable over K, this condition is also sufficient. A number of properties of such fields are determined and examples are presented illustrating the results.References
- James K. Deveney and John N. Mordeson, Subfields and invariants of inseparable field extensions, Canadian J. Math. 29 (1977), no. 6, 1304–1311. MR 472782, DOI 10.4153/CJM-1977-131-4
- James K. Deveney and John N. Mordeson, Invariants of reliable field extensions, Arch. Math. (Basel) 29 (1977), no. 2, 141–147. MR 460301, DOI 10.1007/BF01220387
- James K. Deveney and John N. Mordeson, Splitting and modularly perfect fields, Pacific J. Math. 83 (1979), no. 1, 45–54. MR 555038
- James K. Deveney and John N. Mordeson, The order of inseparability of fields, Canadian J. Math. 31 (1979), no. 3, 655–662. MR 536370, DOI 10.4153/CJM-1979-065-3
- Jean Dieudonné, Sur les extensions transcendantes séparables, Summa Brasil. Math. 2 (1947), no. 1, 1–20 (French). MR 25441
- Nickolas Heerema and David Tucker, Modular field extensions, Proc. Amer. Math. Soc. 53 (1975), no. 2, 301–306. MR 401724, DOI 10.1090/S0002-9939-1975-0401724-8
- Hanspeter Kraft, Inseparable Körpererweiterungen, Comment. Math. Helv. 45 (1970), 110–118 (German). MR 260709, DOI 10.1007/BF02567318
- Saunders Mac Lane, Modular fields. I. Separating transcendence bases, Duke Math. J. 5 (1939), no. 2, 372–393. MR 1546131, DOI 10.1215/S0012-7094-39-00532-6
- J. N. Mordeson and B. Vinograde, Relatively separated transcendental field extensions, Arch. Math. (Basel) 24 (1973), 521–526. MR 376632, DOI 10.1007/BF01228250 —, Inseparable embeddings of separable transcendental extensions, Arch. Math. (Basel) 26 (1975), 606-610. MR 35 #2913.
- Moss Eisenberg Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401–410. MR 223343, DOI 10.2307/1970711
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 260 (1980), 185-193
- MSC: Primary 12F15
- DOI: https://doi.org/10.1090/S0002-9947-1980-0570785-4
- MathSciNet review: 570785